|试卷下载
搜索
    上传资料 赚现金
    5.1 平面直角坐标系【八大题型】(举一反三)(苏科版)(教师版)
    立即下载
    加入资料篮
    5.1 平面直角坐标系【八大题型】(举一反三)(苏科版)(教师版)01
    5.1 平面直角坐标系【八大题型】(举一反三)(苏科版)(教师版)02
    5.1 平面直角坐标系【八大题型】(举一反三)(苏科版)(教师版)03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学苏科版八年级上册第五章 平面直角坐标系5.2 平面直角坐标系习题

    展开
    这是一份初中数学苏科版八年级上册第五章 平面直角坐标系5.2 平面直角坐标系习题,共25页。


    TOC \ "1-3" \h \u
    \l "_Tc801" 【题型1 用有序数对表示位置或路线】 PAGEREF _Tc801 \h 1
    \l "_Tc31647" 【题型2 平面内点的坐标特征】 PAGEREF _Tc31647 \h 4
    \l "_Tc25474" 【题型3 由点到坐标轴的距离确定点的坐标】 PAGEREF _Tc25474 \h 6
    \l "_Tc2165" 【题型4 由点的位置确定坐标系中字母的取值】 PAGEREF _Tc2165 \h 8
    \l "_Tc20923" 【题型5 坐标系内求图形的面积】 PAGEREF _Tc20923 \h 9
    \l "_Tc9144" 【题型6 图形在坐标系中的平移】 PAGEREF _Tc9144 \h 14
    \l "_Tc25024" 【题型7 利用平面直角坐标系解决探究性问题】 PAGEREF _Tc25024 \h 17
    \l "_Tc4957" 【题型8 建立适当的直角坐标系解决实际问题】 PAGEREF _Tc4957 \h 20
    【知识点1 有序数对】
    有顺序的两个数a与b组成的数对叫做有序数对.
    点的坐标: 有了平面直角坐标系,平面内的点就可以用一个有序数对来表示,a点对应x轴的数值为横坐标,b点对应y轴的数值为纵坐标,有序数对就叫做点A的坐标,记作(a,b).
    【题型1 用有序数对表示位置或路线】
    【例1】(2023春·甘肃陇南·八年级统考期中)一个小伙伴拿着如图的密码表玩听声音猜单词的游戏,若听到“咚咚一咚咚,咚一咚,咚咚咚一咚”表示的是“DOG”,则听到“咚咚一咚,咚咚咚一咚咚,咚一咚咚咚”时,表示的是___________.
    【答案】CAT
    【分析】根据题意即可求解.
    【详解】解:∵咚咚-咚咚,咚-咚,咚咚咚-咚”表示的动物是“DOG”,表示2,2,1,1,3,1对应的字母为“DOG”,则“咚咚-咚,咚咚咚-咚咚,咚-咚咚咚”表示2,1,3,2,1,3,对应表格中的“CAT”,
    故答案为:CAT.
    【点睛】本题考查了有序数对表示位置,理解题意是解题的关键.
    【变式1-1】(2023春·福建福州·八年级福州三牧中学校考开学考试)小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是( ).
    A.小李现在位置为第1排第2列B.小张现在位置为第3排第2列
    C.小王现在位置为第2排第2列D.小谢现在位置为第4排第2列
    【答案】B
    【分析】由于撤走一排,则四人所在的列数不变、排数减一,据此逐项排除即可.
    【详解】解:A. 小李现在位置为第1排第4列,故A选项错误,不符合题意;
    B. 小张现在位置为第3排第2列,故B选项正确,符合题意;
    C. 小王现在位置为第2排第3列,故C选项错误,不符合题意;
    D. 小谢现在位置为第4排第4列,故D选项错误,不符合题意.
    故选:B.
    【点睛】本题考查了位置的确定,根据题目信息、明确行和列的实际意义是解答本题的关键.
    【变式1-2】(2023春·重庆渝中·八年级统考期末)从2,3,5三个数中任选两个组成有序数对,一共可以组成有序数对有( )
    A.3对B.4对C.5对D.6对
    【答案】D
    【分析】分别从2、3、5三个数字中选出两个组成有序实数对,然后计算出总数目即可.
    【详解】解:可以组成2,3,2,5,3,2,3,5,5,2,5,3共6个有序实数对,
    故选D.
    【变式1-3】(2023春·浙江杭州·八年级开学考试)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动,它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.例如从A到B记为:A→B(+1,+4),从D到C记为:D→C(-1,+2),其中第一个数表示左右方向,第二个数表示上下方向.
    (1)图中A→C(______,______),B→C(______,______),D→______(-4,-2);
    (2)若这只甲虫从A处去P处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P的位置;
    【答案】(1)+3,+4;+2,0;A;(2)见解析
    【分析】(1)根据规定及实例可知A→C记为(+3,+4)B→C记为(+2,0)D→A记为(-4,-2);
    (2)按题目所示平移规律分别向右向上平移2个格点,再向右平移2个格点,向下平移1个格点;向左平移2个格点,向上平移3个格点;向左平移1个向下平移两个格点即可得到点P的坐标,在图中标出即可;
    【详解】解:(1)∵规定:向上向右走为正,向下向左走为负,
    ∴A→C记为(+3,+4)B→C记为(+2,0)D→A记为(-4,-2);
    (2)根据行走路线可得:P点位置如图所示.
    【点睛】本题主要考查了正数与负数,利用坐标确定点的位置的方法.解题的关键是正确的理解从一个点到另一个点移动时,如何用坐标表示.
    【知识点2 坐标平面内点的坐标特征】
    1.坐标平面内点的坐标特征:
    ①坐标原点的坐标为(0,0);
    ②第一象限内的点,x、y同号,均为正;
    ③第二象限内的点,x、y异号,x为负,y为正;
    ④第三象限内的点,x、y同号,均为负;
    ⑤第四象限内的点,x、y异号,x为正,y为负;
    ⑥横轴(x轴)上的点,纵坐标为0,即(x,0),所以,横轴也可写作:y=0 (表示一条直线)
    ⑦纵轴(y轴)上的点,横坐标为0,即(0,y),所以,纵横也可写作:x=0 (表示一条直线)
    2.平行于坐标轴的直线的表示:
    在平面直角坐标系中,与x轴平行的直线上的所有点的纵坐标相同,与y轴平行的直线上的所有点的横坐标相同.
    3.象限角平分线的特点:
    ①第一、三象限的角平分线上的点的纵坐标与横坐标相等(同号)
    ②第二、四象限的角平分线的点的纵坐标与横坐标互为相反数(异号)
    【题型2 平面内点的坐标特征】
    【例2】(2023春·广东珠海·八年级珠海市紫荆中学桃园校区校考期中)如图,若在象棋盘上建立平面直角坐标系,使“兵”位于点(1,-1),则“炮”位于点( )

    A.(0,0)B.(0,-1)C.(-1,1)D.(-1,0)
    【答案】D
    【分析】根据题意,确定坐标系的原点,由此即可求解.
    【详解】解:∵“兵”位于点(1,-1),如图所示,确定坐标系原点,

    ∴“炮”位于点(-1,0),
    故选:D.
    【点睛】本题主要考查平面直角坐标系的知识,掌握平面直角坐标系原点的确定方法是解题的关键.
    【变式2-1】(2023春·广东珠海·八年级珠海市紫荆中学桃园校区校考期中)点P(1,-4),则点P在( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    【答案】D
    【分析】根据平面直角坐标系象限的特点即可求解.
    【详解】解:∵点P(1,-4)中,x>0,y<0,
    ∴点P在第四象限,
    故选:D.
    【点睛】本题主要考查平面直角坐标系的特点,掌握平面直角坐标系中象限的符号特征是解题的关键.
    【变式2-2】(2023春·湖北武汉·八年级统考期中)在平面直角坐标系中,下列各点在x轴上的是( )
    A.1,2B.3,0C.0,-1D.-5,6
    【答案】B
    【分析】根据x轴上的点的纵坐标为0,结合各选项找到符合条件的点即可.
    【详解】解:因为x轴上的点的纵坐标为0,各选项中纵坐标为0的点只有选项B,
    故选:B.
    【点睛】本题考查了点的坐标,解题的关键是掌握好坐标轴上的点的坐标的特征,用到的知识点为:x轴上的点的纵坐标为0.
    【变式2-3】(2023春·天津滨海新·八年级校考期中)在平面直角坐标系中,点A-1,m2+1一定在第( )象限
    A.一B.二C.三D.四
    【答案】B
    【分析】根据点在第二象限的坐标特点解答即可.
    【详解】解:点A-1,m2+1,
    ∵横坐标-1<0,纵坐标m2+1>0,
    ∴符合点在二象限的条件,故点A-1,m2+1一定在第二象限,
    故选:B.
    【点睛】本题主要考查平面直角坐标系中各象限内点的坐标的符号,关键是根据点在第二象限的坐标特点解答.
    【知识点3 点到坐标轴的距离】
    坐标平面内的点的横坐标的绝对值表示这点到纵轴(y轴)的距离,而纵坐标的绝对值表示这点到横轴(x轴)的距离.
    注: ①已知点的坐标求距离,只有一个结果,但已知距离求坐标,则因为点的坐标有正有负,
    可能有多个解的情况,应注意不要丢解.
    【题型3 由点到坐标轴的距离确定点的坐标】
    【例3】(2023春·上海黄浦·八年级统考期末)在直角坐标平面内,A是第二象限内的一点,如果它到x轴、y轴的距离分别是3和4,那么点A的坐标是( )
    A.3,-4B.-3,4C.4,-3D.-4,3
    【答案】D
    【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.
    【详解】解:∵点A在第二象限,到x轴的距离是3,到y轴的距离是4,
    ∴点A的横坐标是-4,纵坐标是3,
    ∴点A的坐标为-4,3.
    故选:D.
    【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.
    【变式3-1】(2023春·北京朝阳·八年级校考期中)直角坐标平面内的点Pa,b到x轴的距离为______,到y轴的距离为______.
    【答案】 b a
    【分析】根据直角坐标系内的点的坐标特点即可判断.
    【详解】解:∵点Pa,b到x轴的距离是其纵坐标的绝对值,点Pa,b到y轴的距离是其横坐标的绝对值,
    ∴点Pa,b到x轴的距离为b,到y轴的距离为a.
    故答案为:b,a
    【点睛】此题主要考查点到坐标轴的距离,解题的关键是熟知点到x轴的距离是其纵坐标的绝对值,点到y轴的距离是其横坐标的绝对值.
    【变式3-2】(2023春·天津西青·八年级校联考期中)在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离恰为到x轴距离的2倍,则点M的坐标为( )
    A.(8,-4)B.-4,8C.(2,4)D.-4,2
    【答案】A
    【分析】根据点到坐标轴的距离及点所在的象限解答即可.
    【详解】解:设点M的坐标为(x,y),
    ∵点M到x轴的距离为4,
    ∴y=4,
    ∴y=±4,
    ∵点M到y轴的距离恰为到x轴距离的2倍,,
    ∴x=2×4=8,
    ∴x=±8,
    ∵点M在第四象限内,
    ∴x=8,y=-4,
    即点M的坐标为(8,-4).
    故选:A.
    【点睛】此题主要考查平面直角坐标系中的点到坐标轴的距离,象限内点的坐标的符号特点等知识,解题关键是要牢记第四象限内的点的坐标符号特点为(+,-).
    【变式3-3】(2023春·黑龙江鹤岗·八年级校考期中)已知点P坐标为2+a,3a-6且点P到两坐标轴的距离相等,则点P的坐标是( )
    A.6,6B.3,-3C.-6,-6或-3,-3D.6,6或3,-3
    【答案】D
    【分析】分点的横坐标与纵坐标相等和互为相反数两种情况讨论求解即可.
    【详解】由题意得:
    ①2+a+3a-6=0或②2+a=3a-6,
    解得:a=1或a=4,
    当a=1时,点P3,-3,
    当a=4时,点P6,6,
    综上所述:P3,-3或6,6,
    故选:D.
    【点睛】此题考查了点的坐标,解题的关键是分情况讨论点的所处象限.
    【知识点4 坐标平面内对称点坐标的特点】
    ①一个点A(a,b)关于x轴对称的点的坐标为A'(a,-b),特点为:x不变,y相反;
    ②一个点A(a,b)关于y轴对称的点的坐标为A'(-a,b),特点为:y不变,x相反;
    ③一个点A(a,b)关于原点对称的点的坐标为A'(-a,-b),特点为:x、y均相反.
    【题型4 由点的位置确定坐标系中字母的取值】
    【例4】(2023春·上海宝山·八年级统考期末)已知点A的坐标为a,a-2,点B的坐标为5,a+3,AB∥y轴,则线段AB的长为( )
    A.5B.6C.7D.13
    【答案】A
    【分析】根据AB∥y轴,可得A、B两点的横坐标相等,可求得a,即可求解.
    【详解】解:∵A点的坐标为a,a-2,B点的坐标为5,a+3,AB∥y轴,
    ∴a=5,
    ∴A点的坐标为5,3,B点的坐标为5,8,
    ∴AB=8-3=5,
    故选:A.
    【点睛】本题主要考查了坐标与图形的性质,根据平行于y轴的直线上点的横坐标相等,求出a的值是解题的关键.
    【变式4-1】(2023春·湖北武汉·八年级统考期中)若点Ma+3,a-2在x轴上,则a=______.
    【答案】2
    【分析】直接利用x轴上点的坐标特点a-2=0,求出a的值即可.
    【详解】解:∵点Ma+3,a-2在x轴上,
    ∴a-2=0,解得:a=2.
    故答案为2.
    【点睛】本题主要考查了点的坐标,掌握x轴上点的纵坐标为零是解题的关键.
    【变式4-2】(2023春·八年级校考期中)若A(x,4)关于y轴的对称点是B(﹣3,y),则x=____,y=____.点A关于x轴的对称点的坐标是____.
    【答案】 3 4 (3,﹣4)
    【分析】根据点关于x轴对称则横坐标不变纵坐标互为相反数,关于y轴对称则纵坐标不变横坐标互为相反数即可求解.
    【详解】解:∵A(x,4)关于y轴的对称点是B(-3,y),
    ∴x=3,y=4,
    ∴A点坐标为(3,4),
    ∴点A关于x轴的对称点的坐标是(3,-4).
    故答案为:3;4;(3,-4).
    【点睛】本题考查了点关于坐标轴对称的特点:点关于x轴对称则横坐标不变纵坐标互为相反数,关于y轴对称则纵坐标不变横坐标互为相反数,由此即可求解.
    更多资料添加微信号:DEM2008 淘宝搜索店铺:优尖升教育 网址:
    【变式4-3】(2023春·广东肇庆·八年级校考期中)在平面直角坐标系中,已知点M2-m,1+2m.
    (1)若点M到y轴的距离是3,求M点的坐标;
    (2)若点M在第一、三象限的角平分线上,求M点的坐标.
    【答案】(1)M3,-1或M-3,11
    (2)M53,53
    【分析】(1)根据题意得到2-m=3,解答即可;
    (2)根据题意得到点M横、纵坐标相等,进而即可求解.
    【详解】(1)解:由题意得:2-m=3,
    2-m=3,2-m=-3,
    m1=-1,m2=5,
    当m=-1时,M3,-1,
    当m=5时,M-3,11;
    (2)解;∵M在第一、三象限的角平分线上,
    ∴2-m=1+2m,
    ∴m=13,
    ∴M53,53.
    【点睛】本题考查了一元一次方程的解法,点与坐标的对应关系,坐标轴上的点的特征,各个象限的点的特征,第一、三象限的角平分线上的点的特征,解题的关键是掌握点的坐标特征.
    【题型5 坐标系内求图形的面积】
    【例5】(2023春·辽宁丹东·八年级校考期中)如图所示,在平面直角坐标系中点A-3,0,B5,0,C3,4,D-2,3.
    (1)求四边形ABCD的面积
    (2)点P为y轴上一点,且△ABP的面积等于四边形ABCD的面积的一半,求点P的坐标.
    【答案】(1)23;(2)0,238或0,-238.
    【分析】(1)分别过C、D作x轴的垂线,垂足分别为E、F,分别计算AF、DF、BE的长,根据三角形面积公式、梯形面积公式分别解得S△ADF=32,S△BCE=4,S梯形CEFD=352即可解题;
    (2)设P0,b,根据题意,结合三角形面积公式及绝对值的性质化简解题即可.
    【详解】解:(1)分别过C、D作x轴的垂线,垂足分别为E、F,
    因为A-3,0,B5,0,C3,4,D-2,3,
    所以AF=1,DF=3CE=4,BE=2EF=5,
    所以S△ADF=12×1×3=32,
    所以S△BCE=12×2×4=4,
    所以S梯形CEFD=3+4×5=352,
    所以S四边形ABCD=32+4+352=23.
    (2)设P0,b
    则有S△ABP=12S四边形ABCD=232
    即12×AB×OP=12×8×b=232
    解得:|b|=238
    所以b=±238
    所以点P的坐标为0,94或0,-94.
    【点睛】本题考查坐标与图形的性质、三角形面积、绝对值的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.
    【变式5-1】(2023春·辽宁沈阳·八年级统考期末)如图,在平面直角坐标系中,已知A(-1,1),B(3,2),C(3,4).
    (1)请在平面直角坐标系中描出A,B,C三点,再连接AB,BC,AC,并求△ABC的面积;
    (2)连接OA,OB,请直接写出△ABO面积的值.
    【答案】(1)作图见解析,△ABC的面积为4;(2)52
    【分析】(1)根据A,B,C三点的坐标进行描点,从而得到△ABC,最后利用三角形面积公式进行求解;
    (2)用一个梯形的面积减去两个三角形的面积得到△ABO的面积.
    【详解】(1)如图,△ABC即为所求,
    S△ABC=12×(4-2)×(3+1)=4.
    (2)S△ABO=12×(1+2)×(3+1)-12×1×1-12×3×2=52.
    【点睛】本题考查了坐标与图形的性质,明确三角形的面积以及数形结合是解题的关键.
    【变式5-2】(2023春·河北承德·八年级统考期中)已知A(a,0)和点B(0,5)两点,则直线AB与坐标轴围成的三角形的面积等于10,则a的值是( )
    A.-4B.4C.±4D.±5
    【答案】C
    【分析】根据三角形的面积公式和已知条件列等量关系式求解即可.
    【详解】解:假设直角坐标系的原点为O,则直线AB与坐标轴围成的三角形是以OA、OB为直角边的直角三角形,
    ∵A(a,0)和点B(0,5),
    ∴OA=|a|,OB=5,
    ∴SΔOAB=12×OA×OB=12×|a|×5=10,
    ∴|a|=4,
    ∴a=±4.
    故选:C
    【点睛】本题主要考查了三角形的面积和直角坐标系的相关知识,需注意坐标轴上到一个点的距离为定值的点有2个.
    【变式5-3】(2023春·青海西宁·八年级校考期中)已知点A(-2,3),B(4,3),C(-1,-3).
    (1)在平面直角坐标系中标出点A,B,C的位置;
    (2)求线段AB的长;
    (3)求点C到x轴的距离,点C到AB的距离;
    (4)求三角形ABC的面积;
    (5)若点P在y轴上,且三角形ABP的面积与三角形ABC的面积相等,求点P的坐标.
    【答案】(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3)
    【分析】(1)根据三个点的坐标,在坐标系中标出来对应的位置即可;
    (2)根据两点坐标求出两点的距离即可;
    (3)根据点到直线的距离和到x轴的距离为点的纵坐标的绝对值即可求解;
    (4)根据三角形面积=AB的长×C到直线AB的距离求解即可;
    (5)根据同底等高的两个三角形面积相等即可求解.
    【详解】解:(1)如图所示,即为所求;
    (2)∵A(-2,3),B(4,3),
    ∴AB=4-(-2)=6;
    (3)∵C(-1,-3),
    ∴C到x轴的距离为3,到直线AB的距离为6;
    (4)∵AB=6,C到直线AB的距离为6,
    ∴S△ABC=12×6×6=18;
    (5)如图所示,三角形ABP与三角形ABC同底等高,即为所求
    ∴P(0,-3);
    同理当P在AB的上方还有一个到AB距离是6的点满足要求,即P(0,9);
    ∴P(0,-3)或(0,9).
    【点睛】本题主要考查了坐标与图形,三角形面积公式,点到直线的距离,解题的关键在于能够熟练掌握相关知识进行求解.
    【知识点5 点的平移】
    在平面直角坐标系中,
    将点(x,y)向右平移a个单位长度,可以得到对应点(x+a ,y);
    将点(x,y)向左平移a个单位长度,可以得到对应点(x-a,y);“左减右加”
    将点(x,y)向上平移b个单位长度,可以得到对应点(x,y+b);
    将点(x,y)向下平移b个单位长度,可以得到对应点(x,y-b).“下减上加”
    【题型6 图形在坐标系中的平移】
    【例6】(2023春·广东东莞·八年级校考期中)如图,在单位正方形网格中,建立了平面直角坐标系xOy,试解答下列问题:

    (1)若将△ABC向右平移6个单位,再向下平移2个单位后得到△A1B1C1,请画出平移后的△A1B1C1;
    (2)求△ABC的面积;
    (3)已知第一象限内有两点P3, n+2,Q6, n.平移线段PQ,使点P,Q分别落在两条坐标轴上.请直接写出点P平移后的对应点的坐标.
    【答案】(1)见详解
    (2)6
    (3)P(0,2)或(-3,0)
    【分析】(1)求出平移后对应点的坐标为A1(5,0),B1(2,3),C1(3,-2),再顺次连接各点即可;
    (2)利用割补法求△ABC的面积即可;
    (3)P3, n+2,Q6, n.两点的水平距离6-3=3,垂直距离n+2-n=2,再分两种情况即可.
    【详解】(1)解:A(-1,2),B(-4,5),C(-3,0),
    平移后对应点的坐标为A1(5,0),B1(2,3),C1(3,-2),
    平移后的图象如图所示:

    (2)解:S△ABC=3×5-12×1×5-12×2×2-12×3×3=6;
    (3)解:P3, n+2,Q6, n.两点的水平距离6-3=3,垂直距离n+2-n=2,
    平移线段PQ,使点P,Q分别落在两条坐标轴上,如图所示:

    点P平移后的对应点的坐标为P(0,2)或(-3,0).
    【点睛】本题考查了平面直角坐标系内图形的平移问题,本题的关键是理解图形的平移要归结为图形顶点的平移.
    【变式6-1】(2023春·上海普陀·八年级统考期末)在直角坐标平面内,△ABC经过平移,其顶点A2,-1 的对应点A1的坐标是-2,3,那么其内部任意一点Dx,y的对应点D1的坐标一定是( )
    A.-x,-yB.-x,y+4C.x-4,y+4D.x+4,y-4
    【答案】C
    【分析】先由点A的平移得到平移方式,再根据平移方式得到答案即可.
    【详解】解:∵△ABC的顶点A坐标是A2,-1,经平移后,得到其对应点A1 -2,3,
    ∴平移方式为向左平移4个单位,向上平移4个单位,
    ∴△ABC的内部任意一点Dx,y,则其对应点D1坐标一定是x-4,y+4.
    故选:C.
    【点睛】此题考查的是坐标与图形变化-平移,熟知图形平移不变性的性质是解题的关键.
    【变式6-2】(2023春·广东汕尾·八年级校考期中)把平面直角坐标系中的一点P(3,m)向上平移2个单位长度后,点P的对应点P'刚好落在x轴上,则m的值为( )
    A.-2B.0C.1D.2
    【答案】A
    【分析】根据平移写出点P'的坐标,根据x轴上的点的纵坐标为0即可求解.
    【详解】解:∵把平面直角坐标系中的一点P(3,m)向上平移2个单位长度后,点P的对应点P'为3,m+2,点P'在x轴上,
    ∴m+2=0
    ∴m=-2
    故选:A.
    【点睛】本题考查了点的平移,x轴上点的坐标特征,求得P'的坐标是解题的关键.
    【变式6-3】(2023春·陕西宝鸡·八年级统考期中)在平面直角坐标系内,已知点Aa-5,2b-1在y轴上,点B3a+2,b+3在x轴上,则点Ca,b向右平移2个单位长度再向下平移3个单位长度后的坐标为______.
    【答案】7,-6
    【分析】先根据y轴上的点的横坐标为0、x轴上的点的纵坐标为0可求出a,b的值,从而可得点C的坐标,再根据点的坐标的平移变换规律即可得.
    【详解】解:∵Aa-5,2b-1在y轴上,B3a+2,b+3在x轴上,
    ∴a-5=0,b+3=0,
    解得a=5,b=-3,
    ∴C5,-3,
    则C5,-3向右平移2个单位长度再向下平移3个单位长度后的坐标为5+2,-3-3,即为7,-6,
    故答案为:7,-6.
    【点睛】本题考查了坐标轴上的点的坐标、点的坐标的平移变换规律,熟练掌握点的坐标的平移变换规律是解题关键.
    【题型7 利用平面直角坐标系解决探究性问题】
    【例7】(2023春·河南郑州·八年级校考期末)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到1,1,第2次接着运动到点2,0,第3次接着运动到点3,2,按这样的运动规律,经过第2023次运动后,动点P的坐标是( )
    A.2023,0B.2023,1C.2023,2D.2024,0
    【答案】C
    【分析】根据图象可得出:横坐标为运动次数,纵坐标依次为1,0,2,0,每4次一轮,进而即可求出答案.
    【详解】解:根据动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点1,1,第2次接着运动到点2,0,第3次接着运动到点3,2,
    ∴第4次运动到点4,0,第5次接着运动到点5,1,…,
    ∴横坐标为运动次数,经过第2023次运动后,动点P的横坐标是2023,
    纵坐标依次为1,0,2,0,每4次一轮,
    ∴2023÷4=505⋅⋅⋅⋅⋅3,
    ∴经过第2023次运动后,动点P的坐标是2023,2;
    故答案为:C.
    【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.
    【变式7-1】(2023春·八年级校考期中)如图,在平面直角坐标系中,有若干个整点,按图中→方向排列,即0,0→0,1→1,1→2,2→2,3→3,3→4,4,……,则按此规律排列下去第23个点的坐标为( )
    A.(13,13)B.(14,14)C.(15,15)D.(14,15)
    【答案】D
    【分析】先由题意写出前几个点的坐标,观察发现并归纳:横坐标与纵坐标相等且为偶数的点的坐标特点,从而可得答案.
    【详解】解:∵ 0,0→0,1→1,1→2,2→2,3→3,3→4,4→4,5→5,5→6,6→6,7→7,7→8,8……
    ∴ 观察发现:每三个点为一组,每组第一个点坐标为:2n-2,2n-2,
    23÷3=7……2,
    ∴第23个点在第八组的第二个,
    ∵第八组的第一个点坐标为:14,14,
    ∴第23个点的坐标为:14,15,
    故选:D.
    【点睛】本题考查的是坐标规律的探究,解题的关键是仔细观察坐标变化规律,掌握从具体到一般的探究方法.
    【变式7-2】(2023春·山东泰安·八年级肥城市实验中学校考期中)如图,长方形ABCD的两边BC,CD分别在x轴,y轴上,点C与原点重合,点A-1,2,将长方形ABCD沿x轴无滑动向右翻滚,经过一次翻滚,点A对应点记为A1;经过两次翻滚,点A对应点记为A2;…;经过第2023次翻滚,点A对应点A2023坐标为___________.
    【答案】3033,0
    【分析】根据题意,确定图形从开始位置经过4次翻滚后点A进行了一次循环回到对应位置,从而结合长方形周长为6,依据2023=4×505+3即可得到答案.
    【详解】解:根据题意得:点A-1,2,A12,1,A23,0,A33,0,A45,2……,
    由此发现,经过4次翻滚后点A进行了一次循环回到对应位置,
    ∵长方形的周长为:2×1+2=6,
    ∴每一次完整循环,相当于A对应点的横坐标+6,纵坐标保持不变,
    ∵2023=4×505+3,
    ∴经过第2023次翻滚,点A对应点A2023坐标为6×505+4-1,0,即3033,0,
    故答案为:3033,0.
    【点睛】本题考查动点坐标规律,读懂题意,理解图形从开始位置经过4次翻滚后点A进行了一次循环回到对应位置是解决问题的关键.
    【变式7-3】(2023春·山西·八年级期末)在平面直角坐标系中,某点按向下、向右、向上、向右的方向依次不断移动,每次移动1个单位长度,其运动路线如图所示,根据图形规律,解决下列问题.
    (1)点A5的坐标为___________,点A9的坐标为___________,点A13的坐标为___________,点A4n+1的坐标为___________.
    (2)直接写出点A1到点A2025的距离:___________.
    【答案】(1)2,-1;4,-1;6,-1;2n,-1
    (2)1012
    【分析】(1)根据题意可得点A5的坐标为2,-1;点A9的坐标为4,-1;点A13的坐标为6,-1;……由此发现规律,即可求解;
    (2)根据2025÷4=506⋯1,可得点A2025的坐标为1012,-1,即可求解.
    【详解】(1)解:根据题意得:点A5的坐标为2,-1;
    点A9的坐标为4,-1;
    点A13的坐标为6,-1;
    ……
    由此发现,点A4n+1的坐标为2n,-1;
    故答案为:2,-1;4,-1;6,-1;2n,-1;
    (2)解:∵2025÷4=506⋯1,
    ∴点A2025的坐标为506×2,-1,即1012,-1,
    ∵点A1的坐标为0,-1,
    ∴点A1到点A2025的距离1012.
    故答案为:1012
    【点睛】本题主要考查了平面直角坐标系,点的坐标的规律题,明确题意,准确得到点A4n+1的坐标为2n,-1是解题的关键.
    【题型8 建立适当的直角坐标系解决实际问题】
    【例8】(2023春·山西晋中·八年级统考期中)我们出门旅游经常利用平面图确定位置,如图是某地火车站及周围场所的简单平面图,(图中每个小正方形的边长代表1千米).
    (1)请以图中某一场所所在的位置为坐标原点,以小正方形的边长为单位长度,建立平面直角坐标系,并直接写出体育场A、超市B、市场C、文化宫D的坐标;
    (2)在(1)中所建的坐标平面内,相关部门计划兴建一所学校,请你选择某一格点为学校E的位置,请在图中标出学校E的位置并写出E的坐标,简要说明你的选址理由.
    【答案】(1)见解析,A的坐标为-4,3,B的坐标为0,4,C的坐标为4,3,D的坐标为2,-3
    (2)见解析
    【分析】(1)以火车站所在的位置为坐标原点,建立平面直角坐标系,即可表示出体育场A、超市B、市场C、文化宫D的坐标;
    (2)选址理由合理即可,根据点的坐标的意义描出点E并写出坐标.
    【详解】(1)解:平面直角坐标系如图所示,体育场A的坐标为-4,3、超市B的坐标为0,4、市场C的坐标为4,3、文化宫D的坐标为2,-3.
    (2)如图,点E即为所作学校位置.学校E坐标为-2,-3,
    选址理由合理即可(如:选址文化宫附近,便于组织安排一些文化活动).
    【点睛】本题考查了坐标确定位置,主要是对平面直角坐标系的定义和点的坐标的写法的考查,是基础题.
    【变式8-1】(2023春·山西太原·八年级统考期中)直升机除了可以正常飞行,还可以悬停在空中进行作业,这也是直升机区别于一般固定翼飞机的一种特有飞行状态.如图,训练中的三架直升机按要求悬停在同一高度,若甲、乙的位置分别表示为1,0,-1,-2,则丙直升机的位置表示为______.
    【答案】-2,1
    【分析】根据甲、乙的坐标构建平面直角坐标系,即可得到丙的位置.
    【详解】如图所示:丙的位置为-2,1.
    故答案为:-2,1.
    【点睛】本题考查了坐标的知识点,解题的关键是根据坐标确定坐标系和点的位置.
    【变式8-2】(2023春·江西景德镇·八年级统考期中)景德镇市第十六中学为全面保障校庆五十周年的整体效果,在操场中标记了几个关键位置,如图是利用平面直角坐标系画出的关键位置分布图,若表示点A的坐标为(-1,-2),点B的坐标为(1,1),则表示其他位置的点的坐标正确的是( )
    A.C(-1,-2)B.D(-3,1)C.E(-7,-3)D.F(4,-1)
    【答案】C
    【分析】根据已知点的坐标确定平面直角坐标系,再根据平面直角坐标系,根据点的位置,写出各点的坐标即可.
    【详解】解:根据点A的坐标为(-1,-2),表示点B的坐标为(1,1), 确定坐标原点如下:
    可得: C(-2,-1),D(-5,0),E(-7,-3),F(3,3),
    故选:C.
    【点睛】本题考查根据坐标确定位置,解题的关键就是确定坐标原点和x,y轴的位置及方向.
    【变式8-3】(2023春·河南平顶山·八年级统考期中)园林部门为了对市内某旅游景区内的古树名木进行系统养护,建立了相关的地理信息系统,其中重要的一项工作就是要确定这些古树的位置.已知该旅游区有树龄百年以上的古松树4棵S1,S2,S3,S4,古槐树6棵H1,H2,H3,H4,H5,H6.为了加强对这些古树的保护,园林部门根据该旅游景区地图,将4棵古松树的位置用坐标表示为S1(2,8),S2(4, 9),S3(10, 5),S4(11,10).
    (1)根据S1的坐标为(2, 8),请在图中补充画出平面直角坐标系;
    (2)在所建立的平面直角坐标系中,写出6棵古槐树的坐标;
    (3)已知H5在S1,的南偏东41°,且相距5.4米处,试用方位角和距离描述S1;相对于H5的位置?
    相关试卷

    八年级上册6.2 一次函数课后复习题: 这是一份八年级上册<a href="/sx/tb_c100320_t7/?tag_id=28" target="_blank">6.2 一次函数课后复习题</a>,共32页。

    苏科版八年级上册6.1 函数精练: 这是一份苏科版八年级上册<a href="/sx/tb_c100319_t7/?tag_id=28" target="_blank">6.1 函数精练</a>,共27页。

    数学八年级上册第六章 一次函数6.1 函数课后复习题: 这是一份数学八年级上册<a href="/sx/tb_c100319_t7/?tag_id=28" target="_blank">第六章 一次函数6.1 函数课后复习题</a>,共13页。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        5.1 平面直角坐标系【八大题型】(举一反三)(苏科版)(教师版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map