|试卷下载
搜索
    上传资料 赚现金
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      1.2.3怎样判定三角形全等(原卷版).docx
    • 解析
      1.2.3怎样判定三角形全等(解析版).docx
    1.2.3怎样判定三角形全等(3题型基础+能力+创新+易错)01
    1.2.3怎样判定三角形全等(3题型基础+能力+创新+易错)02
    1.2.3怎样判定三角形全等(3题型基础+能力+创新+易错)03
    1.2.3怎样判定三角形全等(3题型基础+能力+创新+易错)01
    1.2.3怎样判定三角形全等(3题型基础+能力+创新+易错)02
    1.2.3怎样判定三角形全等(3题型基础+能力+创新+易错)03
    还剩3页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学青岛版八年级上册1.2 怎样判定三角形全等优秀同步测试题

    展开
    这是一份初中数学青岛版八年级上册1.2 怎样判定三角形全等优秀同步测试题,文件包含123怎样判定三角形全等原卷版docx、123怎样判定三角形全等解析版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。

    题型一 SSS的直接运用
    1.如图,在 和 中 ,,, 在不添加任何辅助线的条件下, 可判断, 判断这两个三角形全等的依据是( )
    A.B.C.D.
    【答案】C
    【分析】此题主要考查了三角形全等的判定方法,根据已知条件结合公共边,即可根据证明两三角形全等.
    【详解】解:在和中,
    ∴.故选:C.
    2.如图,中,,,直接使用“”可判定( )
    A.B.
    C.D.
    【答案】C
    【分析】本题主要考查了全等三角形的判定,熟知全等三角形的判定定理是解题的关键.
    【详解】解:∵,,,
    ∴,
    根据现有条件无法直接利用判定,,,
    故选:C.
    3.如图1是某款雨伞的实物图,图2是该雨伞部分骨架示意图.测得,点,分别是,的三等分点,,那么的依据是 ;
    【答案】
    【分析】本题考查全等三角形的应用,解题的关键是熟练掌握全等三角形的判定定理.
    由点分别是的三等分点,,得出,根据三边对应相等,证明.
    【详解】解:∵点分别是的三等分点,



    在与中,

    ∴△AED≌△AFD(SSS)
    故答案为:.
    4.如图,,,,求证:.
    【答案】见解析
    【分析】本题考查全等三角的判定,由,可证,再利用“”证明即可.
    【详解】证明:∵,
    ∴,
    即,
    在和中,
    ∴.
    5.如图,,,.求证:.
    【答案】见解析
    【分析】本题主要考查三角形全等的证明.由可得,从而通过“”即可证明.
    【详解】∵,
    ∴,即.
    在和中,


    题型二 SSS与全等三角形的性质的综合运用
    1.如图,已知点A,B,D,E在同一直线上,,,,若,则的度数为 .

    【答案】/85度
    【分析】本题考查了全等三角形的判定和性质,平行线的判定与性质,证明三角形全等是解题的关键.
    由“”可证,可得,可证,即可求解.
    【详解】解:,

    在和中,






    故答案为:.
    2.如图,点、、、在同一条直线上,,,
    (1)求证:;
    (2)若,,求的度数.
    【答案】(1)见解析
    (2)
    【分析】本题主要考查了全等三角形的判定与性质,熟练地掌握全等三角形的判定和性质是解决本题的关键.
    (1)先证明,再结合已知条件可得结论;
    (2)证明,再结合三角形的内角和定理可得结论.
    【详解】(1)证明:∵
    ∴,即
    ∵,

    (2)∵,,
    ∴,
    ∵,

    3.如图所示,是一个风筝架,,是连接点与中点的支架,求证:.
    【答案】见解析
    【分析】本题考查了全等三角形的性质与判定,要证,根据垂直定义,需证,可由证得.
    【详解】证明:是的中点,.在和中,

    全等三角形的对应角相等.


    垂直定义.
    题型三 三角形全等判定方法的综合应用
    1.如图所示,已知,,,交于点,连接.试说明:.
    【答案】见解析
    【分析】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键
    证明,则.证明,可得 .
    【详解】解:在和中,
    ∵,
    ∴,
    ∴.
    在和中,
    ∵,
    ∴,
    ∴.
    2.如图,在四边形中,,点,分别在,上,连接,,,,,
    (1)试说明:;
    (2)试说明:.
    【答案】(1)见解析
    (2)见解析
    【分析】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定是解题的关键.
    (1)利用证明△ACE≌△ACF,得出即可;(2)根据△ACE≌△ACF
    ,得出,推出,利用证明,得出即可.
    【详解】(1)证明:在和中,
    ∴,
    ∴;
    (2)证明:∵由(1)得△ACE≌△ACF,
    ∴,
    ∴180°-∠ACE=180°-∠ACF,即,
    在和中,


    ∴.

    1.已知,如图所示的网格是由9个相同的小正方形拼成的,图中的各个顶点均为格点,则的度数为( )
    A.B.C.D.
    【答案】C
    【分析】本题考查网格中的全等三角形,会利用全等图形求正方形网格中角度之和是解答的关键.根据网格特点,可得出,进而可求解.
    【详解】解:如图,
    由图可知:,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴.
    故选C.
    2.如图,已知、相交于O,,.求证.
    【答案】证明见解析
    【分析】本题考查的是全等三角形的判定与性质,熟练的利用证明三角形全等是解本题的关键;连接,再证明即可.
    【详解】解:连接,如图∶
    在与中,

    ∴.
    3.如图,,,.
    (1)图中有几对全等三角形?请一一写出来.
    (2)过点作,,垂足分别为,.求证:.
    【答案】(1)有3对全等三角形:;;
    (2)见解析
    【分析】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.
    (1)根据全等三角形的判断定理即可得到结论;
    (2)先证明,得到,再根据面积公式即可得出结论.
    【详解】(1)解:∵,,
    ∴;
    ∵,,.
    ∴;
    ∵,,,
    ∴.
    ∴共有3对全等三角形:;;.
    (2)证明:在和中,
    ∴.
    ∴.
    ∵,,
    ∴.
    ∴.
    1.如图,,,、相交于,由这些条件可以得到若干结论,请你写出其中3个正确结论(不要添加字母和辅助线,并对其中一个给出证明)
    结论1:
    结论2:
    结论3:
    证明:
    【答案】结论1:
    结论2:
    结论3:平分
    证明结论3,见详解
    【分析】结合题意,得出三个结论;利用“”证明,由全等三角形的性质即可证明平分.
    【详解】结论1:
    结论2:
    结论3:平分
    证明结论3:在和中,

    ∴,
    ∴,即平分.
    【点睛】本题主要考查了全等三角的判定与性质,熟练掌握全等三角形的判定定理是解题关键.
    2.问题探究:(1)如图1是古希腊数学家欧几里得所著的《几何原本》第1卷命题9:“平分一个已知角.”
    即:作一个已知角的平分线.
    欧几里得在《几何原本》中给出的角平分线作图法:在和上分别取点C和D,使得,连接,以为边作等边,则就是的平分线.
    请证明平分;
    类比迁移:
    (2)小明根据以上信息研究发现:不一定必须是等边三角形,只需即可.他查阅资料:我国古代已经用角尺平分任意角.做法如下:如图2,在的边,上分别取,移动角尺,使角尺两边相同刻度分别与点M,N重合,则过角尺顶点C的射线是的平分线,请说明此做法的理论依据是______;
    拓展实践:
    (3)小明将研究应用于实践.如图3,校园的两条小路和,汇聚形成了一个岔路口A,现在学校要在两条小路之间安装一盏路灯E,使得路灯照亮两条小路(两条小路一样亮),并且路灯E到岔路口A的距离和休息椅D到岔路口A的距离相等.试问路灯应该安装在哪个位置?请在对应的示意图4中画出路灯E的位置,并说明图中所画各组线段的数量关系.
    【答案】(1)见解析;(2);(3)见解析
    【分析】本题考查的是全等三角形的判定与性质,角平分线的定义与角平分线的性质,作已知角的角平分线,理解题意,熟练的作角的平分线是解本题的关键.
    (1)先证明,可得,从而可得答案;
    (2)先证明,可得,可得是的角平分线;
    (3)在、上截取,用角尺,使角尺的顶点O到点M,N的距离相等,即,连接点与角尺的顶点O,在上截取,则点即为所求作的点.
    【详解】解:(1)∵为等边三角形,
    ∴,
    ∵,,,
    ∴,
    ∴,
    ∴是的角平分线;
    (2)∵,,,
    ∴,
    ∴,
    ∴是的角平分线,
    ∴此做法的理论依据是;
    (3)如图,在、上截取,用角尺,使角尺的顶点O到点M,N的距离相等,即,连接点与角尺的顶点O,在上截取,则点即为所求作的点.
    根据作图可知:,,,
    ∴,
    ∴平分,
    1.在如图所示的3×3网格中,是格点三角形(即顶点恰好是网格线的交点),则与有一条公共边且全等(不含)的所有格点三角形的个数是 .

    【答案】4
    【分析】本题考查全等三角形的判定,解题的关键是理解题意,灵活运用所学知识解决问题.
    根据全等三角形的判定画出图形,即可判断.
    【详解】解:如图,观察图象可知满足条件的三角形有4个.

    由图可得,所有格点三角形的个数是4,
    故答案为:4.
    2.如图,在四边形ABDE中,,,点C是边BD上一点,,,.下列结论:①;②;③四边形的面积是;④;其中正确的结论个数是( )

    A.4B.3C.2D.1
    【答案】B
    【分析】证明,由全等三角形的性质可得出.由图形的面积可得出③④正确.
    【详解】解:∵,,
    ∴.
    ∵,,,
    ∴,故①正确;
    ∴.
    ∵,
    ∴.
    ∵,
    ∴,
    故②正确;
    ∵,,
    ∴四边形的面积是;
    故③错误;
    ∵,

    ∴.
    故④正确.
    综上所述,正确的是①②④;
    故选:B.
    【点睛】本题考查了全等三角形的判定及性质的运用,垂直的判定及性质的运用,解答时证明三角形全等是关键.
    相关试卷

    青岛版八年级上册1.1 全等三角形精品综合训练题: 这是一份青岛版八年级上册<a href="/sx/tb_c92976_t7/?tag_id=28" target="_blank">1.1 全等三角形精品综合训练题</a>,文件包含11全等三角形原卷版docx、11全等三角形解析版docx等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。

    猜想02:实数(易错必刷36题11种题型)(原卷版+解析版): 这是一份猜想02:实数(易错必刷36题11种题型)(原卷版+解析版),文件包含猜想02实数易错必刷36题11种题型原卷版docx、猜想02实数易错必刷36题11种题型解析版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。

    初中数学人教版八年级下册19.2.2 一次函数课后练习题: 这是一份初中数学人教版八年级下册<a href="/sx/tb_c102621_t7/?tag_id=28" target="_blank">19.2.2 一次函数课后练习题</a>,共26页。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        1.2.3怎样判定三角形全等(3题型基础+能力+创新+易错)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map