终身会员
搜索
    上传资料 赚现金
    第15练 导数与函数的单调性(精练:基础+重难点)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      第15练 导数与函数的单调性(精练:基础+重难点)原卷版.docx
    • 解析
      第15练 导数与函数的单调性(精练:基础+重难点)解析版.docx
    第15练 导数与函数的单调性(精练:基础+重难点)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用)01
    第15练 导数与函数的单调性(精练:基础+重难点)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用)02
    第15练 导数与函数的单调性(精练:基础+重难点)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用)03
    第15练 导数与函数的单调性(精练:基础+重难点)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用)01
    第15练 导数与函数的单调性(精练:基础+重难点)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用)02
    第15练 导数与函数的单调性(精练:基础+重难点)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用)03
    还剩6页未读, 继续阅读
    下载需要25学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第15练 导数与函数的单调性(精练:基础+重难点)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用)

    展开
    这是一份第15练 导数与函数的单调性(精练:基础+重难点)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用),文件包含第15练导数与函数的单调性精练基础+重难点原卷版docx、第15练导数与函数的单调性精练基础+重难点解析版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。

    1、求已知函数(不含参)的单调区间
    ①求的定义域
    ②求
    ③令,解不等式,求单调增区间
    ④令,解不等式,求单调减区间
    注:求单调区间时,令(或)不跟等号.
    2、由函数的单调性求参数的取值范围的方法
    (1)已知函数在区间上单调
    ①已知在区间上单调递增,恒成立.
    ②已知在区间上单调递减,恒成立.
    注:已知单调性,等价条件中的不等式含等号.
    (2)已知函数在区间上存在单调区间
    ①已知在区间上存在单调增区间,有解.
    ②已知在区间上存在单调减区间,有解.
    (3)已知函数在区间上不单调,使得(为变号零点)
    3、含参问题讨论单调性
    第一步:求的定义域
    第二步:求(导函数中有分母通分)
    第三步:确定导函数有效部分,记为
    对于进行求导得到,对初步处理(如通分),提出的恒正部分,将该部分省略,留下的部分则为的有效部分(如:,则记为的有效部分).接下来就只需考虑导函数有效部分,只有该部分决定的正负.
    第四步:确定导函数有效部分的类型:
    ①为一次型(或可化为一次型)②为二次型(或可化为二次型)
    第五步:通过分析导函数有效部分,讨论的单调性
    刷真题 明导向
    一、解答题
    1.(2022·浙江·统考高考真题)设函数.
    (1)求的单调区间;
    2.(2021·全国·统考高考真题)已知函数.
    (1)讨论的单调性;
    3.(2021·浙江·统考高考真题)设a,b为实数,且,函数
    (1)求函数的单调区间;
    (注:是自然对数的底数)
    4.(2021·全国·高考真题)设函数,其中.
    (1)讨论的单调性;
    5.(2021·全国·统考高考真题)已知且,函数.
    (1)当时,求的单调区间;
    【A组 在基础中考查功底】
    一、单选题
    1.(2023·全国·高三专题练习)函数的单调减区间是( )
    A.B.
    C.D.
    2.(2023·全国·高三专题练习)函数,则( )
    A.为偶函数,且在上单调递增
    B.为偶函数,且在上单调递减
    C.为奇函数,且在上单调递增
    D.为奇函数,且在上单调递减
    3.(2023·全国·高三专题练习)设函数在定义域内可导,的图象如图所示,则其导函数的图象可能是( )
    A. B. C.D.
    4.(2023·全国·高三专题练习)若函数在区间内单调递增,则a的取值范围是( )
    A.B.C.D.
    5.(2023·全国·高三专题练习)若函数在区间上单调递增,则实数k的取值范围是( )
    A.B.C.D.
    6.(2023·全国·高三专题练习)若函数存在单调递减区间,则实数b的取值范围是( )
    A.B.
    C.D.
    7.(2023·全国·高三专题练习)已知函数,若对,,都有成立,则的取值范围是( )
    A.B.C.D.
    8.(2023·全国·高三专题练习)若为奇函数,则的解集为( )
    A.B.C.D.
    9.(2023·全国·高三专题练习)已知,,,则,,的大小关系为( )
    A.B.
    C.D.
    10.(2023·全国·高三专题练习)对任意的,当时,恒成立,则实数的取值范围是( )
    A.B.C.D.
    二、多选题
    11.(2023·北京朝阳·高三专题练习)游人游玩的湖边常设有如图所示的护栏柱与柱之间是一条均匀悬链.数学中把这种两端固定的一条(粗细与质量分布)均匀、柔软的链条,在重力的作用下所具有的曲线形状称为悬链线.如果建立适当的平面直角坐标系,那么悬链线可以表示为函数,其中,则下列关于悬链线函数的性质判断中,正确的有( ).
    A.为偶函数
    B.为奇函数
    C.的最小值为a
    D.的单调递增区间为
    12.(2023春·河北邯郸·高三校联考开学考试)已知,若,则( )
    A.B.
    C.D.
    13.(2023春·山西忻州·高三校联考开学考试)已知函数,则( )
    A.恒成立B.是上的增函数
    C.在取得极小值D.只有一个零点
    三、填空题
    14.(2023春·宁夏吴忠·高三统考开学考试)设函数,若函数的图象在点处的切线方程为,则函数的单调增区间为__________.
    15.(2023·全国·高三专题练习)若正实数满足则________
    16.(2023春·上海普陀·高三曹杨二中校考阶段练习)已知函数,,若在上恒成立,则实数的取值范围是___________.
    17.(2023·安徽宣城·统考二模)已知函数,则不等式的解集是________.
    四、解答题
    18.(2023·全国·高三专题练习)已知函数,讨论的单调性.
    19.(2023·全国·高三专题练习)已知函数(a∈R且a≠0),讨论函数的单调性.
    【B组 在综合中考查能力】
    一、解答题
    1.(2023·全国·高三专题练习)已知函数.讨论函数的单调区间;
    2.(2023·全国·高三专题练习)已知函数,为函数的导函数,讨论的单调性.
    3.(2023·全国·高三专题练习)已知函数(其中为自然对数的底数),讨论的单调性.
    4.(2023·全国·高三专题练习)已知函数.当时,讨论函数的单调性;
    5.(2023·全国·高三专题练习)已知函数,讨论函数的单调性.
    二、单选题
    6.(2023·四川宜宾·统考三模)已知函数在区间上单调递增,则实数a的取值范围是( )
    A.B.C.D.
    7.(2023·江苏南京·统考二模)已知函数是定义在上的可导函数,其导函数为.若对任意有,,且,则不等式的解集为( )
    A.B.C.D.
    8.(2023·重庆·统考模拟预测)已知,,,则( )
    A.B.C.D.
    9.(2023·全国·校联考三模)已知,则( )
    A.B.
    C.D.
    10.(2023·四川内江·统考三模)若关于x的不等式有且只有一个整数解,则正实数a的取值范围是( )
    A.B.
    C.D.
    三、填空题
    11.(2023春·河北保定·高三校考阶段练习)若函数在区间上存在单调递减区间,则实数的取值范围是________ .
    12.(2023春·浙江·高三开学考试)已知定义在上可导函数,对于任意的实数x都有成立,且当时,都有成立,若,则实数m的取值范围是__________.
    13.(2023春·山西晋城·高三校考阶段练习)若函数在上单调递增,则实数的取值范围是______.
    【C组 在创新中考查思维】
    一、解答题
    1.(2023·全国·高三专题练习)已知函数讨论的单调性;
    2.(2023·全国·高三专题练习)已知函数.当时,求函数的单调区间;
    3.(2023·全国·高三专题练习)已知函数,讨论的单调性;
    二、单选题
    4.(2023·河北·统考模拟预测)设,,,则( )
    A.B.C.D.
    5.(2023·湖北·校联考三模)已知函数图象上存在关于y轴对称的两点,则正数a的取值范围是( )
    A.B.C.D.
    6.(2023·河南·校联考模拟预测)若函数在上单调递增,则实数m的取值范围为( )
    A.B.C.D.
    三、多选题
    7.(2023·广东广州·统考模拟预测)函数,则下列结论正确的是( )
    A.若函数在上为减函数,则
    B.若函数的对称中心为,则
    C.当时,若有三个根,且,则
    D.当时,若过点可作曲线的三条切线,则
    四、填空题
    8.(2023·河南·校联考模拟预测)若函数有且仅有两个零点,且,则_______.
    9.(2023·山东济南·统考三模)已知函数,,当实数满足时,不等式恒成立,则实数的取值范围为______.
    相关试卷

    高考数学高频考点题型归纳与方法(新高考通用)第15练导数与函数的单调性(精练:基础+重难点)(原卷版+解析): 这是一份高考数学高频考点题型归纳与方法(新高考通用)第15练导数与函数的单调性(精练:基础+重难点)(原卷版+解析),共40页。试卷主要包含了解答题,多选题,填空题等内容,欢迎下载使用。

    高考数学高频考点题型归纳与方法(新高考通用)第15练导数与函数的单调性(精练:基础+重难点)(原卷版+解析): 这是一份高考数学高频考点题型归纳与方法(新高考通用)第15练导数与函数的单调性(精练:基础+重难点)(原卷版+解析),共40页。试卷主要包含了解答题,多选题,填空题等内容,欢迎下载使用。

    第01练 集合(精练:基础+重难点)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用): 这是一份第01练 集合(精练:基础+重难点)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用),文件包含分层作业01集合精练基础+重难点原卷版docx、分层作业01集合精练基础+重难点解析版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        第15练 导数与函数的单调性(精练:基础+重难点)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map