还剩5页未读,
继续阅读
所属成套资源:苏教版七年级上册数学举一反三(含答案解析)
成套系列资料,整套一键下载
6.9 平面图形的认识(一)章末拔尖卷(苏科版)(学生版)
展开这是一份6.9 平面图形的认识(一)章末拔尖卷(苏科版)(学生版),共8页。
第6章 平面图形的认识(一)章末拔尖卷【苏科版】考试时间:60分钟;满分:100分姓名:___________班级:___________考号:___________考卷信息:本卷试题共23题,单选10题,填空6题,解答7题,满分100分,限时60分钟,本卷题型针对性较高,覆盖面广,选题有深度,可衡量学生掌握本章内容的具体情况!一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2023上·内蒙古巴彦淖尔·七年级校考期末)下列说法:①经过一点可以画无数条直线;②若线段AC=BC,则点C是线段AB的中点;③射线OB与射线BO是同一条射线;④连接两点的线段叫做这两点的距离;⑤将一根细木条固定在墙上,至少需要两根钉子,是因为两点确定一条直线,其中说法正确的有( )A.2个 B.3个 C.4个 D.5个2.(3分)(2023上·四川德阳·七年级四川省德阳市第二中学校校考阶段练习)如果同一平面内有三条直线,那么它们交点个数是( )个.A.3个 B.1或3个 C.1或2或3个 D.0或1或2或3个3.(3分)(2023上·江苏常州·七年级统考期末)若∠1与∠2互余,∠2与∠3互补,则∠1与∠3的关系是( )A.∠1=∠3 B.∠3=90°C.∠3=180°-∠1 D.∠3=90°+∠14.(3分)(2023上·重庆开州·七年级统考期末)如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,则∠AOD的度数为( )A.40° B.45° C.60° D.75°5.(3分)(2023上·河北张家口·七年级统考期末)如图,在线段MN上有P、Q两点,PQ长度为2cm,MN长为整数,则以M、P、Q、N为端点的所有线段长度和可能为( ) A.19cm B.20cm C.21cm D.22cm6.(3分)(2023上·山东枣庄·七年级校考期末)已知α=36°18',β=36.18°,γ=36.3°,下面结论正确的是( )A.α<γ<β B.γ>α=β C.α=γ>β D.γ<α<β7.(3分)(2023上·重庆江津·七年级统考期末)如图1,线段OP表示一条拉直的细线,A、B两点在线段OP上,且OA:AP=2:3,OB:BP=3:7.若先固定A点,将OA折向AP,使得OA重叠在AP上;如图2,再从图2的B点及与B点重叠处一起剪开,使得细线分成三段,则此三段细线由小到大的长度比是( )A.1:1:2 B.2:2:5 C.2:3:4 D.2:3:58.(3分)(2023上·重庆酉阳·七年级统考期末)如图是一个时钟某一时刻的简易图,图中的12条短线刻度位置是时钟整点时时针(短针)位置,根据图中时针和分针(长针)位置,该时钟显示时间是( )A.10∼11点 B.7∼8点 C.5∼6点 D.2∼3点9.(3分)(2023上·重庆·七年级校考期末)已知点C在线段AB上,AC=2BC,点D,E在线段AB上,点D在点E的左侧.若AB=2DE,线段DE在线段AB上移动,且满足关系式AD+ECBE=32,则CDCB的值为( )A.5 B.1714 C.1714或56 D.111010.(3分)(2023上·山西晋中·七年级统考期末)如图,点O为线段AD外一点,点M,C,B,N为AD上任意四点,连接OM,OC,OB,ON,下列结论不正确的是( )A.以O为顶点的角共有15个B.若MC=CB,MN=ND,则CD=2CNC.若M为AB中点,N为CD中点,则MN=12AD-CBD.若OM平分∠AOC,ON平分∠BOD,∠AOD=5∠COB,则∠MON=32∠MOC+∠BON二.填空题(共6小题,满分18分,每小题3分)11.(3分)(2023下·甘肃定西·七年级统考期末)如图,沿笔直小路DE的一侧栽植两棵小树B,C,小明在A处测得 AB=4米,AC=6米,则点A到DE的距离d可能为 米.(填一个你认为正确的答案) 12.(3分)(2023下·福建南平·七年级统考期中)如图AB、CD相交于点O,OB平分∠DOE,若∠DOE=100°,则∠AOC的度数是 °.13.(3分)(2023上·四川成都·七年级统考期末)如图,长方形纸片ABCD,点P在边AD上,点M,N在边CB上,连接PM,PN.将∠DPN对折,点D落在直线PN上的点D'处,得折痕PE;将∠APM对折,点A落在直线PM上的点A'处,得折痕PF.若∠MPN=30°,则∠EPF= .14.(3分)(2023上·湖北武汉·七年级校考期末)已知线段AB=8,延长BA至点C,使CB=2AB,点D、E均为线段BA延长线上两点,且BD=4AE,M、N分别是线段DE、AB的中点,当点C是线段BD的三等分点时,MN的长为 .15.(3分)(2023上·河南省直辖县级单位·七年级校联考期末)如图,∠AOB=α,OA1、OB1分别是∠AOM和∠MOB的平分线,OA2、OB2分别是∠A1OM和∠MOB1的平分线,OA3、OB3分别是∠A2OM和∠MOB2的平分线,…,OAn,OBn分别是∠An-1OM和∠MOBn-1的平分线,则∠AnOBn的度数是 . 16.(3分)(2023上·浙江温州·七年级统考期末)如图1,一款暗插销由外壳AB,开关CD,锁芯DE三部分组成,其工作原理如图2,开关CD绕固定点O转动,由连接点D带动锁芯DE移动.图3为插销开启状态,此时连接点D在线段AB上,如D1位置.开关CD绕点O顺时针旋转180°后得到C2D2,锁芯弹回至D2E2位置(点B与点E2重合),此时插销闭合如图4.已知CD=74mm,AD2-AC1=50mm,则BE1= mm.三.解答题(共7小题,满分52分)17.(6分)(2023上·广东惠州·七年级惠州一中校考期末)按要求解题:(1)A,B,M,N四点如图所示,读下列语句,按要求作出图形(不写作法):①连接AB;②在线段AB的延长线上取点C,使BC=2AB;③连接AN,BM,它们相交于点P;(2)在(1)题图中,若AB=3cm,D为AB的中点,E为AC的中点,求DE的长.18.(6分)(2023下·四川泸州·七年级统考期中)如图,直线AB,CD相交于点O,且∠BOC=96°,若OF平分∠AOD(1)求∠COF的度数;(2)若OE⊥OF,求∠BOE的度数19.(8分)(2023上·甘肃白银·七年级统考期末)【问题回顾】我们曾解决过这样的问题:如图1,点O在直线AB上,OC,OD分别平分∠AOE,∠BOE,可求得∠OOD=90°.(不用求解) 【问题改编】点O在直线AB上,∠COD=90°,OE平分∠BOC.(1)如图2,若∠AOC=50°,求∠DOE的度数;(2)将图2中的∠COD按图3所示的位置进行放置,写出∠AOC与∠DOE度数间的等量关系,并写明理由.20.(8分)(2023上·全国·七年级专题练习)(1)如图,点C在线段AB上,点M在线段AC上,点N在线段BC上.①已知AC=13,CB=8,,若点M,N分别是AC,BC的中点,求线段MN的长;②已知AC=13,CB=8,,若点M是AC的中点, BN=34BC,求线段MN的长;③已知AC=a,CB=b,,若AM=23AC, BN=13BC,请直接写出线段MN的长(用含a,b的式子表示);(2)若点C在直线AB上,(1)中其他条件不变,已知AC=a,CB=35a,5AM=3CM,3BN=2CN,请直接写出线段MN的长.21.(8分)(2023下·山东济南·七年级统考期末)解答下列问题如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB,∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“巧分线”. (1)一个角的平分线 这个角的“巧分线”,(填“是”或“不是”).(2)如图2,若∠MPN=60°,且射线PQ是∠MPN的“巧分线”,则∠MPQ= (表示出所有可能的结果探索新知). (3)如图3,若∠MPN=α,且射线PQ是∠MPN的“巧分线”,则∠MPQ= (用含α的代数式表示出所有可能的结果). 22.(8分)(2023上·四川成都·七年级统考期末)已知线段AB=m(m为常数),点C为直线AB上一点(不与点A、B重合),点M、N分别在线段BC、AC上,且满足CN=3AN,CM=3BM.(1)如图,当点C恰好在线段AB中点,且m=8时,则MN=______;(2) 若点C在点A左侧,同时点M在线段AB上(不与端点重合),请判断CN+2AM -2MN的值是否与m有关?并说明理由.(3) 若点C是直线AB上一点(不与点A、B重合),同时点M在线段AB上(不与端点重合),求MN长度 (用含m的代数式表示).23.(8分)(2023上·河北唐山·七年级统考期末)如图,点O为直线AB上一点,将斜边为CD的直角三角板的直角顶点放在点O处,OE平分∠BOC. (1)如图1,若∠AOC=30°,求∠DOE的度数;(2)将直角三角板绕顶点O顺时针旋转至图2的位置,其他条件不变,探究∠AOC和∠DOE度数之间的关系,写出你的结论,并说明理由;(3)在图1中,∠AOC=30°,OP与OD的起始位置重合,再将三角板COD绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,第t秒时,射线OD恰好是锐角∠BOP的三等分线,则t的值为__________秒(直接写出结果).
相关资料
更多