所属成套资源:2024届中考数学考前《终讲·终练·终卷》冲刺高分突破(全国通用)
2024届中考数学考前《终讲·终练·终卷》冲刺高分突破(全国通用)第09讲:压轴题 原卷版
展开这是一份2024届中考数学考前《终讲·终练·终卷》冲刺高分突破(全国通用)第09讲:压轴题 原卷版,共16页。
题型一:动态几何
1.(2021·江苏苏州·一模)如图,内接于,,,点为弧上一动点,直线于点.当点从点沿弧运动到点时,点经过的路径长为( )
A.B.C.D.
2.(2021·山东威海·中考真题)如图,在菱形ABCD中,,,点P,Q同时从点A出发,点P以1cm/s的速度沿A﹣C﹣D的方向运动,点Q以2cm/s的速度沿A﹣B﹣C﹣D的方向运动,当其中一点到达D点时,两点停止运动.设运动时间为x(s),的面积为y(cm2),则下列图象中能大致反映y与x之间函数关系的是( )
A.B.
C.D.
3.(2021·山东济南·三模)如图1,在Rt△ABC中,∠A=90°,BC=10cm,点P,点Q同时从点B出发,点P以2cm/s的速度沿B→A→C运动,终点为C,点Q出发t秒时,△BPQ的面积为ycm2,已知y与t的函数关系的图象如图2(曲线OM和MN均为抛物线的一部分),给出以下结论:①AC=6cm;②曲线MN的解析式为y=﹣t2+t(4≤t≤7);③线段PQ的长度的最大值为cm;④若△PQC与△ABC相似,则t=秒,其中正确的说法是( )
A.①②④B.②③④C.①③④D.①②③
题型二:新定义问题
4.(2023·重庆·中考真题)在多项式(其中中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:,,.下列说法:
①存在“绝对操作”,使其运算结果与原多项式相等;
②不存在“绝对操作”,使其运算结果与原多项式之和为0;
③所有的“绝对操作”共有7种不同运算结果.
其中正确的个数是
A.0B.1C.2D.3
5.(2021·广西贺州·中考真题)如,我们叫集合,其中1,2,叫做集合的元素.集合中的元素具有确定性(如必然存在),互异性(如,),无序性(即改变元素的顺序,集合不变).若集合,我们说.已知集合,集合,若,则的值是( )
A.-1B.0C.1D.2
6.(2021·湖北荆州·中考真题)定义新运算“※”:对于实数,,,,有,其中等式右边是通常的加法和乘法运算,如:.若关于的方程有两个实数根,则的取值范围是( )
A.且B.C.且D.
题型三:猜想和证明
7.(2023·四川巴中·中考真题)综合与实践.
(1)提出问题.如图1,在和中,,且,,连接,连接交的延长线于点O.
①的度数是___________.
②__________.
(2)类比探究.如图2,在和中,,且,连接并延长交于点O.
①的度数是___________.
②___________.
(3)问题解决.如图3,在等边中,于点D,点E在线段上(不与A重合),以为边在的左侧构造等边,将绕着点A在平面内顺时针旋转任意角度.如图4,M为的中点,N为的中点.
①试说明为等腰三角形.
②求的度数.
8.(2020·河南驻马店·模拟预测)在中,,点是直线上的一动点(不与点重合),连接,在的右侧以为斜边作等腰直角三角形,点是的中点,连接.
【问题发现】(1)如图(1),当点是的中点时,线段与的数量关系是_________,位置关系是__________.
【猜想证明】(2)如图(2),当点在边上且不是的中点时,(1)中的结论是否仍然成立?若成立,请仅就图(2)中的情况给出证明;若不成立,请说明理由.
【拓展应用】(3)若,其他条件不变,连接,.当是等边三角形时,直接写出的面积.
题型四:阅读理解
9.(2023·江西新余·一模)定义:在平面直角坐标系中,抛物线与轴的交点坐标为,那么我们把经过点且平行于轴的直线称为这条抛物线的极限分割线.
【特例感知】
(1)抛物线的极限分割线与这条抛物线的交点坐标为______ .
【深入探究】
(2)经过点和的抛物线与轴交于点,它的极限分割线与该抛物线另一个交点为,请用含的代数式表示点的坐标.
【拓展运用】
(3)在(2)的条件下,设抛物线的顶点为,直线垂直平分,垂足为,交该抛物线的对称轴于点.
①当时,求点的坐标.
②若直线与直线关于极限分割线对称,是否存在使点到直线的距离与点到直线的距离相等的的值?若存在,直接写出的值;若不存在,请说明理由.
10.(2023·山东青岛·二模)如图1,是的高,点E,F分别在边和上,且.由“相似三角形对应高的比等于对应边的比”可以得到以下结论:.
(1)如图2,在中,,边上的高为8,在内放一个正方形,使其一边在上,点M,N分别在,上,则正方形的边长=______;
(2)某葡萄酒庄欲在展厅的一面墙上,布置一个腰长为100cm,底边长为120cm的等腰三角形展台.现需将展台用平行于底边的隔板,每间隔10cm分隔出一层,再将每一层尽可能多的分隔成若干个开口为正方形的长方体格子,要求每个格子内放置一瓶葡萄酒,平面设计图如图3所示,将底边的长度看作是第0层隔板的长度;
①在分隔的过程中发现,当隔板厚度忽略不计时,每层平行于底边的隔板长度(单位:cm)随着层数(单位:层)的变化而变化.请完成下表:
②在①的条件下,请直接写出该展台最多可以摆放多少瓶葡萄酒?
题型五:开放探究
11.(2022·安徽滁州·二模)【证明体验】
(1)如图1,为的角平分线,,点在线段上,,求证:平分;
【思考探究】
(2)如图2,在(1)的条件下,为上一点,连接交于点.若,
求证:;
【拓展延伸】
(3)如图3,在四边形中,对角线平分,,点在上,,若,,,求的长.
12.(2022·浙江杭州·二模)如图,在平面直角坐标系中,点A,B的坐标分别是(﹣4,0),(0,8),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.
(1)当点C运动到线段OB的中点时,求t的值及点E的坐标;
(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形;
(3)在线段PE上取点F,使PF=3,过点F作MN⊥PE,截取FM= ,FN=1,且点M,N分别在第一、四象限,在运动过程中,当点M,N中,有一点落在四边形ADEC的边上时,直接写出所有满足条件的t的值.
题型六:综合应用
13.(2024·河北邢台·三模)如图至图,中,,,点在折线上,连接,将沿向右上方折叠,折叠后得到或四边形.
探究如图,若,点在上
①当射线经过点时,求证:;
②当点,的距离最小时,求的长.
尝试如图,若,点在上,当点F在的延长线上时,求的值.
延伸如图,若,,恰好经过点时,直接写出的长.
14.(2024·福建宁德·二模)蹦床是一项运动员利用蹦床的反弹在空中表现杂技技巧的竞技运动,有“空中芭蕾”之美称.甲、乙两位蹦床运动员在某次训练过程中同时起跳,甲运动员着落蹦床后便停止运动,乙运动员着落蹦床后继续做放松运动,每次蹦床运动间隔停留时间忽略不计.图1是甲、乙两位运动员的运动高度与运动时间的二次函数图象,点A的坐标为,点B的坐标为,点D的坐标为,且所有二次函数图象开口大小相同.
(1)求甲运动员在这次训练中运动的最大高度;
(2)图2是教练员观测到乙运动员在这次训练中,每次运动的最高点都在同一视线上,教练员的视线与水平线的夹角为.
①若甲、乙运动员在2.4s时运动高度相同,求直线的表达式;
②当时,求乙在第二次蹦床运动中最大运动高度的取值范围.(,,)
15.(2024·山东淄博·二模)如图1,抛物线与x轴交于点,与y轴交于点C,连接,.
(1)求该抛物线及直线的函数表达式;
(2)如图2,在上方的抛物线上有一动点P(不与B,C重合),过点P作,交于点D,过点P作轴,交于点E.在点P运动的过程中,请求出周长的最大值及此时点P的坐标;
(3)如图3,若点P是该抛物线上一动点,问在点P运动的过程中,坐标平面内是否存在点Q使以B,C,P,Q为顶点为对角线的四边形是矩形,若存在,请求出此时点Q的坐标;若不存在,请说明理由.
16.(2024·江苏淮安·模拟预测)如图1,二次函数与轴交于A、B两点,与轴交于点C.点坐标为,点坐标为,点是第一象限内抛物线上的一个动点,过点作轴,垂足为D,交直线于点,设点的横坐标为.
(1)求该二次函数的表达式;
(2)如图2,过点作,垂足为,当为何值时,最大?最大值是多少?
(3)如图3,连接,当四边形是矩形时,在抛物线的对称轴上存在点,使原点关于直线的对称点恰好落在该矩形对角线所在的直线上,请直接写出满足条件的点的坐标.
【专题精练】
一、单选题
17.(2023·四川宜宾·三模)如图,在中,,点D、E分别是的中点.将绕点A顺时针旋转,射线与射线交于点P,在这个旋转过程中有下列结论:
①;②存在最大值为;③存在最小值为;④点P运动的路径长为.其中,正确的是( )
A.①③④B.①②④C.①②③D.②③④
18.(2023·湖北十堰·三模)若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点,若在二次函数 (m为常数)的图象上存在两个二倍点,,且,则m的取值范围是( )
A. B. C. D.
19.(2023·黑龙江大庆·一模)如图,在平面直角坐标系中,半径为2的与x轴的正半轴交于点A,点B是上一动点,点C为弦的中点,直线与x轴、y轴分别交于点D、E,则点C到直线的最小距离为( )
A.1B.C.D.
20.(2022·浙江宁波·二模)如图,正六边形中,点P是边上的点,记图中各三角形的面积依次为,则下列判断正确的是( )
A.B.C.D.
21.(2022·山东东营·中考真题)如图,已知菱形的边长为2,对角线相交于点O,点M,N分别是边上的动点,,连接.以下四个结论正确的是( )
①是等边三角形;②的最小值是;③当最小时;④当时,.
A.①②③B.①②④C.①③④D.①②③④
22.(2022·辽宁抚顺·模拟预测)如图,点E、F分别在正方形ABCD的边CD、AD上,且AB=2CE=3AF,过F作FG⊥BE于P交BC于G,连接DP交BC于H,连BF、EF.下列结论:
①△PBF为等腰直角三角形;②H为BC的中点;③∠DEF=2∠PFE;④.
其中正确的结论( )
A.只有①②③B.只有①②④C.只有③④D.①②③④
23.(2020·浙江金华·一模)如图,在等边三角形ABC中,点P,Q分别是AC,BC边上的动点(都不与线段端点重合),且AP=CQ,AQ、BP相交于点O.下列四个结论:①若PC=2AP,则BO=6OP;②若BC=8,BP=7,则PC=5;③AP2=OP⋅AQ;④若AB=3,则OC的最小值为,其中正确的是( )
A.①③④B.①②④C.②③④D.①②③
24.(21-22九年级上·广东深圳·期中)如图,正方形ABCD的边长为4,点E在边AB上,BE=1,∠DAM=45°,点F在射线AM上,且AF=,过点F作AD的平行线交BA的延长线于点H,CF与AD相交于点G,连接EC、EG、EF.下列结论:①CG=;②AEG的周长为8;③EGF的面积为.其中正确的是( )
A.①②③B.①③C.①②D.②③
25.(2021·广东深圳·二模)如图,在矩形ABCD中,BC=AB,E为BC中点,连接AE交BD于点F,连CF,下列结论:①AE⊥BD;②S矩形ABCD=10S△CEF;③;④正确的有( )个.
A.1B.2C.3D.4
26.(2020·安徽滁州·模拟预测)在△EFG中,∠G=90°,,正方形ABCD的边长为1,AD与EF在一条直线上,点A与点E重合.现将正方形ABCD沿EF方向以每秒1个单位的速度匀速运动,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数图象大致是( )
A.B.C.D.
二、填空题
27.(2024·陕西西安·二模)如图,菱形中,,, 为的中点,为上一点,连接,作且面积为,则的最小值为 .
28.(2023·陕西咸阳·一模)如图,矩形的顶点A,C分别在x轴、y轴上,点B的坐标为,是的内切圆,点N,点P分别是,x轴上的动点,则的最小值是 .
29.(2023·天津河西·一模)如图,正方形的边长为4,是边上一点,,连接,与相交于点,过点作,交于点,连接,则点到的距离为 .
30.(2021·浙江湖州·二模)对某一个函数给出如下定义:若存在实数,对于任意的函数值,都满足,则称这个函数是有界函数,在所有满足条件的中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.将函数的图象向上平移个单位,得到的函数的边界值满足是时,则的取值范围是 .
31.(2023·湖北武汉·模拟预测)如图,是边长为3的等边三角形,延长至点,使得.点在线段上,且,连接,以为边向右作等边,过点作交的延长线于点,点是的中点,则四边形的面积为 .
32.(2023·浙江宁波·二模)如图,与交于A、B两点,过B作y轴的垂线,垂足为C,交于点D,点D关于直线的对称点E恰好落在x轴上,且轴,连接,则 ;若的面积为15,则的值为 .
三、解答题
33.(2024·陕西西安·模拟预测)如图,已知抛物线:与x轴交于A,D两点,,点A在直线l:上.
(1)求抛物线的解析式;
(2)将抛物线沿x轴翻折后得到抛物线,与直线l交于A,B两点,点P是抛物线上A,B之间的一个动点(不与点A、B重合),于M,轴交于N,求的最大值.
34.(2024·福建龙岩·模拟预测)在锐角内部取一点,过点分别作于点,作于点,以为直径作,的延长线与交于点.
(1)求证:;
(2)若,点在的延长线上,求证:是的切线;
(3)当时,连接,若于点,求的值.
35.(2024·广东佛山·模拟预测)四边形是的内接矩形,点E是上的一动点,连接,,,其中交于点F.
(1)如1图,当时,
①求证:;
②若,连接,.求证:四边形是菱形.
(2)如2图,若,,请用含k的式子表示的值.
36.(2024·黑龙江哈尔滨·一模)如图,抛物线交x轴正半轴于点A,过顶点作轴于点.
(1)求抛物线的解析式;
(2)若时,则函数的取值范围是______;
(3)点为右侧第一象限抛物线上一点,过点作轴于点,点为轴正半轴上一点,连接,,延长线交轴于点B,点在轴负半轴上,连接、,若,求直线的解析式.
37.(2024·吉林长春·一模)如图,在菱形中,,.点为线段延长线上一点,且,动点从点出发,以每秒1个单位长度的速度沿向终点匀速运动.连结、,将绕点按逆时针方向旋转得到,设点运动的时间是秒.
(1)菱形的面积是________;
(2)用含的代数式表示线段的长;
(3)当、、三点共线时,求的值;
(4)当是直角三角形时,直接写出的值.
38.(2024·吉林长春·一模)如图,在正方形中,动点从点出发,沿运动到点停止.过点作的垂线,垂足为点,延长到点,使,连结,直线与交于点.设为,且.
(1)当时, , ;
(2)当点在上时,
①求的值;
②当为轴对称图形时,求的大小;
(3)若正方形的面积为,直接写出面积的最大值.
39.(2024·黑龙江哈尔滨·一模)综合实践
菱形中,点在对角线上,点在直线上,将线段绕点顺时针旋转得到线段,旋转角,连接.
【问题发现】
(1)如图,当点与点重合时,线段、、之间的数量关系为 .
【类比探究】
(2)如图,当点在边上时,时,求证:
【拓展延伸】
(3)如图,点在延长线上,为中点,当,,时,设求与之间的数量关系.
40.(2023·吉林白城·模拟预测)下面是小明同学的作业及自主探究笔记,请认真阅读并补充完整.
【作业】如图①,已知正方形中,分别是、边上的点,且.求证:.
证明:如图,将绕点逆时针旋转,得到,则.
四边形是正方形,,
.
.
又,点在一条直线上.
___,___.
【探究】(1)在图①中,若正方形的边长为,,其他条件不变,求的长.
解:正方形的边长为,.
设,则.
在中,由,解得___,即___.
(2)如图②,在四边形中,,是边上的点,且,则___.
(3)如图③,在中,,为边上的高.若,则的长为___.层数/层
0
1
2
3
…
隔板长度/cm
120
______
______
______
…
相关试卷
这是一份2024届中考数学考前《终讲·终练·终卷》冲刺高分突破(全国通用)第03讲:相似三角形 原卷版,共16页。
这是一份2024届中考数学考前《终讲·终练·终卷》冲刺高分突破(全国通用)第02讲:最值问题 原卷版,共10页。
这是一份2024届中考数学考前《终讲·终练·终卷》冲刺高分突破(全国通用)第01讲:规律问题 原卷版,共10页。