所属成套资源:【高考错题】备战高考数学易错题精编
最新高考数学易错题精编 易错点13 多面体的表面积和体积
展开
这是一份最新高考数学易错题精编 易错点13 多面体的表面积和体积,文件包含高考数学易错题精编易错点13多面体的表面积和体积解析版docx、高考数学易错题精编易错点13多面体的表面积和体积学生版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
其次,通过对错题分析,其中涉及到的知识点以及考点的分析与总结,它能够减少我们复习过程当中同类型的题或者是同一知识点的犯错频率。
第三,对于错题集的复习,最简单的方法就是盖住答案,然后重新来做一遍,从分析的角度条件的分析以及技巧的使用三个方面进行逐一的排除。
第四,在这些错题当中,并非所有的错题都是每个同学易错的,那么在第一遍的错题复习当中,我们就要进行排除,筛选出符合自己特点错题及其针对性也才更强。
如果自己已经完全掌握的,那么就当是对于知识点的再一次复习。这样的错题对于提升自己的能力来说也才是起到了最大的作用。
易错点13 多面体的表面积和体积
多面体,因其具有考查直观想象、逻辑推理、数学抽象的素养的特性,越来越引起出题专家组的青睐。
易错点1:基础知识不扎实
对立几中一些常见结论要做到了然于胸,如:关于三棱锥中顶点在底面三角形上的射影问题的相关条件和结论要在理解的基础上加以熟记;
(2)在思维受阻时,要养成回头看条件的习惯,问一问自己条件是否都用了呢?
易错点2:平面化处理意识不强,简单的组合体画不出适当的截面图致误
易错点3:“想图、画图、识图、解图”能力的欠缺,多面体与几何体的结构特征不清楚导致计算错误
易错点4:空间想象能力欠缺
题组一:侧面积与表面积
1.(2020年全国三卷)如图为某几何体的三视图,则该几何体的表面积是
A.B.C.D.
2.(2021年全国高考甲卷数学(文)试题)已知一个圆锥的底面半径为6,其体积为则该圆锥的侧面积为________.
3.(2016年全国III)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为
A. B. C.90 D.81
题组二:体积
4.(2017新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为
A. B. C. D.
5.(2015新课标)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为
A. B. C. D.
6.(2019全国Ⅲ理16)学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体挖去四棱锥O—EFGH后所得几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,,3D打印所用原料密度为0.9 g/cm3,不考虑打印损耗,制作该模型所需原料的质量为___________.
7.(2019年新课标2卷)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图.半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有 个面,其棱长为 .
题组三:圆柱和圆锥中的问题
8.(2016全国II)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为
A.20π B.24π C.28π D.32π
9.(2021年全国新高考Ⅰ卷数学试题)已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为( )
A.B.C.D.
10.(2021上海卷)在圆柱中,底面圆半径为,高为,上底面圆的直径为,是底面圆弧上的一个动点,绕着底面圆周转,则的面积的范围________.
11.(2018年全国普通高等学校招生统一考试文科数学(新课标I卷))已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为
A.B.C.D.
题组四:大题
12.【2021年新课标1卷】如图,在三棱锥中,平面平面,,为的中点.
(1)证明:;
(2)若是边长为的等边三角形,点在棱上,,且二面角的大小为,求三棱锥的体积.
13.(2021全国甲卷文)已知直三棱柱ABC−A1B1C1中,侧面AA1B1B为正方形.AB=BC=2,E,F分别为AC和CC1的中点,BF⊥A1B1.
(1)求三棱锥F-EBC的体积;
(2)已知D为棱A1B1上的点,证明:BF⊥DE.
14.【2021年乙卷】 如图,四棱锥的底面是矩形,底面,M为的中点,且.
(1)证明:平面平面;
(2)若,求四棱锥的体积.
1.圆柱被一个平面截去一部分后与半球(半径为)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20,则=
A.1 B.2 C.4 D.8
2.某几何体的三视图如图所示,则该几何体的体积为
A. B. C. D.
3.如图,网格纸上正方形小格的边长 为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为
A. B. C. D.
4.正三棱柱的底面边长为2,侧棱长为,D为BC中点,则三棱锥的体积为
A.3 B. C.1 D.
5.已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为 .
6.如图,长方体的体积是120,E为的中点,则三棱锥E-BCD的体积是 .
7.已知圆锥的顶点为,母线,互相垂直,与圆锥底面所成角为,若 的面积为,则该圆锥的体积为__________.
8.如图,圆形纸片的圆心为,半径为5 cm,该纸片上的等边三角形的中心为.、、为圆上的点,,,分别是以,,为底边的等腰三角形。沿虚线剪开后,分别以,,为折痕折起,,,使得、、重合,得到三棱锥。当的边长变化时,所得三棱锥体积(单位:)的最大值为_______。
9.如图,为圆锥的顶点,是圆锥底面的圆心,是底面的内接正三角形,为上一点,∠APC=90°.
(1)证明:平面PAB⊥平面PAC;
(2)设DO=,圆锥的侧面积为,求三棱锥P−ABC的体积.
10.如图,已知三棱柱ABC–A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.
(1)证明:AA1//MN,且平面A1AMN⊥平面EB1C1F;
(2)设O为△A1B1C1的中心,若AO=AB=6,AO//平面EB1C1F,且∠MPN=,求四棱锥B–EB1C1F的体积.
相关试卷
这是一份最新高考数学易错题精编 易错点10 不等式,文件包含高考数学易错题精编易错点10不等式解析版docx、高考数学易错题精编易错点10不等式学生版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。
这是一份最新高考数学易错题精编 易错点04 导数及其应用,文件包含高考数学易错题精编易错点04导数及其应用解析版docx、高考数学易错题精编易错点04导数及其应用学生版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
这是一份最新高考数学易错题精编 易错点03 函数概念与基本函数,文件包含高考数学易错题精编易错点03函数概念与基本函数解析版docx、高考数学易错题精编易错点03函数概念与基本函数学生版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。