|试卷下载
终身会员
搜索
    上传资料 赚现金
    专题8.1同底数幂的乘法-2023-2024学年七年级数学下册尖子生同步培优题典【苏科版】
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题8.1同底数幂的乘法-2020-2021学年七年级数学下册尖子生同步培优题典(原卷版)【苏科版】.docx
    • 解析
      专题8.1同底数幂的乘法-2020-2021学年七年级数学下册尖子生同步培优题典(解析版)【苏科版】.docx
    专题8.1同底数幂的乘法-2023-2024学年七年级数学下册尖子生同步培优题典【苏科版】01
    专题8.1同底数幂的乘法-2023-2024学年七年级数学下册尖子生同步培优题典【苏科版】01
    专题8.1同底数幂的乘法-2023-2024学年七年级数学下册尖子生同步培优题典【苏科版】02
    专题8.1同底数幂的乘法-2023-2024学年七年级数学下册尖子生同步培优题典【苏科版】03
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学苏科版七年级下册第8章 幂的运算8.1 同底数幂的乘法同步训练题

    展开
    这是一份初中数学苏科版七年级下册第8章 幂的运算8.1 同底数幂的乘法同步训练题,文件包含专题81同底数幂的乘法-2020-2021学年七年级数学下册尖子生同步培优题典原卷版苏科版docx、专题81同底数幂的乘法-2020-2021学年七年级数学下册尖子生同步培优题典解析版苏科版docx等2份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。

    本试卷满分100分,考试时间40分钟,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.
    一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.
    1.(2020春•梁溪区期末)计算a3•(﹣a2)结果正确的是( )
    A.﹣a5B.a5C.﹣a6D.a6
    【分析】同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.
    【解析】a3•(﹣a2)=﹣a3+2=﹣a5.
    故选:A.
    2.(2020春•仪征市期中)若3×32×3m=38,则m的值是( )
    A.6B.5C.4D.3
    【分析】根据3×32×3m=38,得31+2+m═38,得到方程1+2+m=8,解得m=5.
    【解析】∵3×32×3m=38,
    ∴31+2+m═38,
    ∴1+2+m=8,
    ∴m=5,
    故选:B.
    3.(2020春•吴兴区期末)计算a•a2的结果是( )
    A.a2B.a3C.2aD.2a2
    【分析】根据同底数幂的乘法法则计算即可.同底数幂相乘,底数不变,指数相加.
    【解析】a•a2=a1+2=a3.
    故选:B.
    4.(2020春•滨湖区期中)若2×22×2n=29,则n等于( )
    A.7B.4C.2D.6
    【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加计算即可.
    【解析】∵2×22×2n=21+2+n=29,
    ∴1+2+n=9,
    解得n=6.
    故选:D.
    5.(2020•海安市模拟)化简(﹣a)2a3所得的结果是( )
    A.a5B.﹣a5C.a6D.﹣a6
    【分析】直接利用同底数幂的乘法运算法则计算得出答案.
    【解析】(﹣a)2a3=a2•a3
    =a5.
    故选:A.
    6.(2019秋•广安期末)若am=8,an=16,则am+n的值为( )
    A.32B.64C.128D.256
    【分析】直接利用同底数幂的乘方运算法则将原式变形求出即可.
    【解析】∵am=8,an=16,
    ∴am+n=am×an=8×16=128.
    故选:C.
    7.(2020春•张家港市校级期中)已知am=3,an=2,那么am+n的值为( )
    A.5B.6C.7D.8
    【分析】逆运用同底数幂的乘法的性质进行计算即可得解.
    【解析】∵am=3,an=2,
    ∴am+n,
    =am•an,
    =3×2,
    =6.
    故选:B.
    8.(2020•开平区一模)计算3n•( )=﹣9n+1,则括号内应填入的式子为( )
    A.3n+1B.3n+2C.﹣3n+2D.﹣3n+1
    【分析】根据同底数幂相乘的性质的逆用,对等式右边整理,然后根据指数的关系即可求解.
    【解析】∵﹣9n+1=﹣(32)n+1=﹣32n+2=﹣3n+n+2=3n•(﹣3n+2),
    ∴括号内应填入的式子为﹣3n+2.
    故选:C.
    9.(2019春•沙河市期末)若3n+3n+3n+3n=49,则n=( )
    A.﹣1B.﹣2C.0D.14
    【分析】将式子化为3n+3n+3n+3n=4×3n=49,即可求解;
    【解析】3n+3n+3n+3n=4×3n=49,
    ∴3n=19,
    ∴n=﹣2,
    故选:B.
    10.(2019春•洪泽区期中)下列计算:(1)an•an=2an (2)a6+a6=a12 (3)c•c5=c5 (4)26+26=27中,正确的个数为( )
    A.3个B.2个C.1个D.0个
    【分析】根据同底数幂的乘法的性质,合并同类项的法则,积的乘方的性质,对各式分析判断后利用排除法求解.
    【解析】(1)an•an=a2n,原题计算错误;
    (2)a6+a6=2a6,原题计算错误;
    (3)c•c5=c6,原题计算错误;
    (4)26+26=2×26=27,原题计算正确;
    正确个数为1,故选:C.
    二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上
    11.(2020春•兴化市月考)已知a2×a3=am,则m的值为 .
    【分析】同底数幂相乘,底数不变,指数相加.
    【解析】∵a2×a3=a2+3=a5=am.
    ∴m=5.
    故答案为:5.
    12.(2020秋•江宁区月考)已知(﹣0.5am)3=﹣64,2a2n=18,则am+2n= ​​.
    【分析】根据立方根的定义可得﹣0.5am=3−64=−4,am=8,根据等式的性质可得a2n=9,再根据同底数幂的乘法法则计算即可.
    【解析】∵(﹣0.5am)3=﹣64,2a2n=18,
    ∴﹣0.5am=3−64=−4,a2n=9,
    即am=8,a2n=9,
    ∴am+2n=am•a2n=8×9=72.
    故答案为:72.
    13.(2020春•广陵区校级期中)已知am=2,an=3(m,n为正整数),则am+n= 6 .
    【分析】同底数幂相乘,底数不变,整数相加,据此计算即可.
    【解析】∵am=2,an=3(m,n为正整数),
    ∴am+n=am×an=2×3=6.
    故答案为:6.
    14.(2020•仪征市模拟)若2×22×2n=29,则n等于 .
    【分析】根据同底数幂的乘法法则计算即可,同底数幂相乘,底数不变,指数相加.
    【解析】∵2×22×2n=21+2+n=29,
    ∴1+2+n=9,
    解得n=6.
    故答案为:6
    15.(2020春•丹徒区期中)计算:m2•m5= .
    【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,据此计算即可.
    【解析】m2•m5=m2+5=m7.
    故答案为:m7.
    16.(2020春•高港区期中)已知2x+y+1=0,则52x•5y= .
    【分析】根据同底数幂的乘法法则和负整数指数幂的性质进行计算即可.
    【解析】∵2x+y+1=0,
    ∴2x+y=﹣1,
    ∴52x•5y=52x+y=5﹣1=15,
    故答案为:15.
    17.(2020春•桃江县期末)若3x=4,3y=5,则3x+y= .
    【分析】根据同底数幂的乘法法则计算即可.
    【解析】∵3x=4,3y=5,
    ∴3x+y=3x•3y=4×5=20.
    故答案为:20.
    18.(2019秋•海安市期末)计算:x5•x2= x7 .
    【分析】根据同底数幂的乘法法则计算即可.
    【解析】x5•x2=x5+2=x7.
    故答案为:x7
    三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)
    19.规定a※b=2a×2b
    (1)求2※3的值;
    (2)若2※(x+1)=16,求x的值.
    【分析】(1)根据规定a※b=2a×2b可以求得题目中所求式子的值,本题得以解决;
    (2)根据规定a※b=2a×2b和同底数幂的乘法的法则即可得到结论.
    【解析】(1)2※3=22×23=4×8=32,
    (2)2※(x+1)=16,
    22×2(x+1)=2x+3=16=24,
    ∴x+3=4,
    ∴x=1.
    20.(2020春•广陵区校级期中)规定a*b=2a×2b,求:
    (1)求1*3;
    (2)若2*(2x+1)=64,求x的值.
    【分析】(1)根据定义以及同底数幂的乘法法则计算即可;
    (2)把64写成底数是2的幂,再根据定义以及同底数幂的乘法法则可得关于x的一元一次方程,再解方程即可.
    【解析】(1)由题意得:1*3=2×23=16;
    (2)∵2*(2x+1)=64,
    ∴22×22x+1=26,
    ∴22+2x+1=26,
    ∴2x+3=6,
    ∴x=32.
    21.(2019春•邗江区校级月考)计算:
    (1)﹣b2×(﹣b)2×(﹣b3)
    (2)(2﹣y)3×(y﹣2)2×(y﹣2)5
    【分析】(1)直接利用同底数幂的乘法运算法则进而计算得出答案;
    (2)直接利用同底数幂的乘法运算法则进而计算得出答案.
    【解析】(1)﹣b2×(﹣b)2×(﹣b3)
    =b2×b2×b3
    =b7;
    (2)(2﹣y)3×(y﹣2)2×(y﹣2)5
    =﹣(y﹣2)3(y﹣2)7
    =﹣(y﹣2)10.
    22.(2020春•兴化市期中)我们约定a☆b=10a×10b,如2☆3=102×103=105.
    (1)试求12☆3和4☆8的值;
    (2)(a+b)☆c是否与a☆(b+c)相等?并说明理由.
    【分析】(1)12☆3=1012×103=1015;4☆8=104×108(1分)=1012;
    (2)因为(a+b)☆c=10a+b×10c=10a+b+c,a☆(b+c)=10a×10b+c=10a+b+c,)(a+b)☆c与a☆(b+c)相等.
    【解析】(1)12☆3=1012×103=1015;
    4☆8=104×108=1012;
    (2)相等,理由如下:
    ∵(a+b)☆c=10a+b×10c=10a+b+c,
    a☆(b+c)=10a×10b+c=10a+b+c,
    ∴(a+b)☆c=a☆(b+c).
    23.(2020•浙江自主招生)对数运算是高中常用的一种重要运算,它的定义为:如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作:x=lgaN,例如:32=9,则lg39=2,其中a=10的对数叫做常用对数,此时lg10N可记为lgN.当a>0,且a≠1,M>0,N>0时,lga(M•N)=lgaM+lgaN.
    (I)解方程:lgx4=2;
    (Ⅱ)求值:lg48;
    (Ⅲ)计算:(lg2)2+lg2•1g5+1g5﹣2018.
    【分析】(I)根据题中的新定义化简为:x2=4,解方程即可得到结果;
    (II)解法一:利用对数的公式:lga(M•N)=lgaM+lgaN,把8=4×2代入公式,即可得到结果;
    解法二:设lg48=x,根据对数的定义得4x=8,化为底数为2的式子,可得结果;
    (II)(lg2)2+lg2•1g5+1g5﹣2018,
    =lg2(lg2+1g5)+lg5﹣2018,
    =lg2•1g10+lg5﹣2018
    (III)知道lg2+1g5=1g10=1,提公因式后利用已知的新定义化简即可得到结果.
    【解析】(I)lgx4=2;
    ∴x2=4,
    ∵x>0,
    ∴x=2;
    (II)解法一:lg48=lg4(4×2)=lg44+lg42=1+12=32;
    解法二:设lg48=x,则4x=8,
    ∴(22)x=23,
    ∴2x=3,
    x=32,
    即lg48=32;
    (II)(lg2)2+lg2•1g5+1g5﹣2018,
    =lg2(lg2+1g5)+lg5﹣2018,
    =lg2•1g10+lg5﹣2018,
    =lg2+1g5﹣2018,
    =1g10﹣2018,
    =1﹣2018,
    =﹣2017.
    24.(2020春•相城区期中)如果ac=b,那么我们规定(a,b)=c,例如:因为23=8,所以(2,8)=3
    (1)根据上述规定,填空:
    (3,27)= 3 ,(4,1)= 0 (2,0.25)= ﹣2 ;
    (2)记(3,5)=a,(3,6)=b,(3,30)=c.求证:a+b=c.
    【分析】(1)根据已知和同底数的幂法则得出即可;
    (2)根据已知得出3a=5,3b=6,3c=30,求出3a×3b=30,即可得出答案.
    【解析】(1)(3,27)=3,(4,1)=0,(2,0.25)=﹣2,
    故答案为:3,0,﹣2;
    (2)证明:∵(3,5)=a,(3,6)=b,(3,30)=c,
    ∴3a=5,3b=6,3c=30,
    ∴3a×3b=30,
    ∴3a×3b=3c,
    ∴a+b=c.
    相关试卷

    初中数学苏科版七年级下册9.4 乘法公式同步测试题: 这是一份初中数学苏科版七年级下册<a href="/sx/tb_c17277_t7/?tag_id=28" target="_blank">9.4 乘法公式同步测试题</a>,文件包含专题95乘法公式2完全平方公式-2020-2021学年七年级数学下册尖子生同步培优题典原卷版苏科版docx、专题95乘法公式2完全平方公式-2020-2021学年七年级数学下册尖子生同步培优题典解析版苏科版docx等2份试卷配套教学资源,其中试卷共12页, 欢迎下载使用。

    初中数学苏科版七年级下册第9章 整式乘法与因式分解9.4 乘法公式同步测试题: 这是一份初中数学苏科版七年级下册<a href="/sx/tb_c17277_t7/?tag_id=28" target="_blank">第9章 整式乘法与因式分解9.4 乘法公式同步测试题</a>,文件包含专题94乘法公式1平方差公式-2020-2021学年七年级数学下册尖子生同步培优题典原卷版苏科版docx、专题94乘法公式1平方差公式-2020-2021学年七年级数学下册尖子生同步培优题典解析版苏科版docx等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。

    数学七年级下册第9章 整式乘法与因式分解9.3 多项式乘多项式达标测试: 这是一份数学七年级下册<a href="/sx/tb_c17278_t7/?tag_id=28" target="_blank">第9章 整式乘法与因式分解9.3 多项式乘多项式达标测试</a>,文件包含专题93多项式乘多项式-2020-2021学年七年级数学下册尖子生同步培优题典原卷版苏科版docx、专题93多项式乘多项式-2020-2021学年七年级数学下册尖子生同步培优题典解析版苏科版docx等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map