所属成套资源:【中考二轮】2023年中考数学难点突破与经典模型精讲练(全国通用)
最新中考数学难点突破与经典模型精讲练 专题08 全等三角形中的角平分线模型 (全国通用)
展开
这是一份最新中考数学难点突破与经典模型精讲练 专题08 全等三角形中的角平分线模型 (全国通用),文件包含专题08全等三角形中的角平分线模型原卷版docx、专题08全等三角形中的角平分线模型解析版docx等2份试卷配套教学资源,其中试卷共52页, 欢迎下载使用。
1、以专题复习为主。如选择题、填空题的专项练习,要把握准确度和时间的安排。加强对二次函数与几何图形结合的综合性试题、实际应用题等专题的练习,深化对常考题型的熟悉程度。在函数复习过程中,如果考生未能完全理解简单实例中的数量关系和变化规律,针对此类问题,在专项复习中,可以通过选择题、填空题的专项练习,进行突破,如“读懂图象信息问题”等,将复杂问题由浅入深,层层分解,提高分析和判断能力。
2、重视方法思维的训练。对初中数学所涉及的函数思想、方程思想、数形结合思想、分类讨论思想、转化与化归思想、整体思想等数学思想方法,要通过典型试题的训练,进一步渗透和深刻理解其内涵,重要处舍得投入时间与精力。强化解题过程中常用的配方法、待定系数法等通法。
3、拓宽思维的广度,培养多角度、多维度思考问题的习惯。将专项复习中的共性习题串连起来,通过一题多解,积极地探求解决问题的最优解法,这样,对于解决难度较大的压轴题会有很大的帮助。
专题08 全等三角形中的角平分线模型
【模型展示】
【模型证明】
【题型演练】
一、单选题
1.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC ④ BA+BC=2BF其中正确的是( )
A.①②③B.①③④C.①②④D.①②③④
【答案】D
【分析】易证,可得,AD=EC可得①②正确;再根据角平分线的性质可求得 ,即③正确,根据③可判断④正确;
【详解】∵ BD为∠ABC的角平分线,
∴ ∠ABD=∠CBD,
∴在△ABD和△EBD中,BD=BC,∠ABD=∠CDB,BE=BA,
∴△(SAS),故①正确;
∵ BD平分∠ABC,BD=BC,BE=BA,
∴ ∠BCD=∠BDC=∠BAE=∠BEA,
∵△ABD≌△EBC,
∴∠BCE=∠BDA,
∴∠BCE+∠BCD=∠BDA+∠BDC=180°,
故②正确;
∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,
∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,
∴∠DCE=∠DAE,
∴△ACE是等腰三角形,
∴AE=EC,
∵△ABD≌△EBC,
∴AD=EC,
∴AD=AE=EC,
故③正确;
作EG⊥BC,垂足为G,如图所示:
∵ E是BD上的点,∴EF=EG,
在△BEG和△BEF中
∴ △BEG≌△BEF,
∴BG=BF,
在△CEG和△AFE中
∴△CEG≌△AFE,
∴ AF=CG,
∴BA+BC=BF+FA+BG-CG=BF+BG=2BF,
故④正确;
故选:D.
【点睛】本题考查了全等三角形的判定,全等三角形对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应边、对应角相等的性质是解题的关键;
2.如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①△AED≌△DFB;②S四边形BCDG=;③若AF=2DF,则BG=6GF;④CG与BD一定不垂直;⑤∠BGE的大小为定值.
其中正确的结论个数为( )
A.4B.3C.2D.1
【答案】B
【详解】试题分析:①∵ABCD为菱形,∴AB=AD,∵AB=BD,∴△ABD为等边三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,故本选项正确;
②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,过点C作CM⊥GB于M,CN⊥GD于N(如图1),则△CBM≌△CDN(AAS),∴S四边形BCDG=S四边形CMGN,S四边形CMGN=2S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四边形CMGN=2S△CMG=2××CG×CG=,故本选项错误;
③过点F作FP∥AE于P点(如图2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP:AE=1:6,∵FP∥AE,∴PF∥BE,∴FG:BG=FP:BE=1:6,即BG=6GF,故本选项正确;
④当点E,F分别是AB,AD中点时(如图3),由(1)知,△ABD,△BDC为等边三角形,∵点E,F分别是AB,AD中点,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC与△BGC中,∵DG=BG,CG=CG,CD=CB,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本选项错误;
⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故本选项正确;
综上所述,正确的结论有①③⑤,共3个,故选B.
考点:四边形综合题.
3.如图,中,,的角平分线、相交于点,过作交的延长线于点,交于点,则下列结论:①;②;③;④四边形,其中正确的个数是( )
A.4B.3C.2D.1
【答案】B
【分析】根据三角形全等的判定和性质以及三角形内角和定理逐一分析判断即可.
【详解】解:∵在△ABC中,∠ACB=90°,
∴∠CAB+∠ABC=90°
∵AD、BE分别平分∠BAC、∠ABC,
∴∠BAD=,∠ABE=
∴∠BAD+∠ABE=
∴∠APB=180°-(∠BAD+∠ABE)=135°,故①正确;
∴∠BPD=45°,
又∵PF⊥AD,
∴∠FPB=90°+45°=135°
∴∠APB=∠FPB
又∵∠ABP=∠FBP
BP=BP
∴△ABP≌△FBP(ASA)
∴∠BAP=∠BFP,AB=AB,PA=PF,故②正确;
在△APH与△FPD中
∵∠APH=∠FPD=90°
∠PAH=∠BAP=∠BFP
PA=PF
∴△APH≌△FPD(ASA),
∴AH=FD,
又∵AB=FB
∴AB=FD+BD=AH+BD,故③正确;
连接HD,ED,
∵△APH≌△FPD,△ABP≌△FBP
∴,,PH=PD,
∵∠HPD=90°,
∴∠HDP=∠DHP=45°=∠BPD
∴HD∥EP,
∴
∵
故④错误,
∴正确的有①②③,
故答案为:B.
【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的方法有:SSS、SAS、AAS、ASA、HL,注意AAA和SAS不能判定两个三角形全等.
二、填空题
4.已知,△ABC中,∠BAC=120°,AD平分∠BAC,∠BDC=60°,AB=2,AC=3,则AD的长是________.
【答案】5
【分析】过D作,,交延长线于F,然后根据全等三角形的性质和角直角三角形的性质即可求解.
【详解】过D作,,交延长线于F,
∵AD平分,,,
∴,,
∵,
,
∴,
∵,
∴,
在和中,
∴,
∴,
在和中,
,
∴,
∴,
∵,
∴,
∴,
∴,
∴,
∵平分,
∴,
∴,
∴.
【点睛】此题考查了全等三角形和角平分线的性质,解题的关键是作出辅助线构造全等三角形.
5.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=50,∠CAP=______.
【答案】40°
【分析】过点P作PF⊥AB于F,PM⊥AC于M,PN⊥CD于N,根据三角形的外角性质和内角和定理,得到∠BAC度数,再利用角平分线的性质以及直角三角形全等的判定,得出∠CAP=∠FAP,即可得到答案.
【详解】解:过点P作PF⊥AB于F,PM⊥AC于M,PN⊥CD于N,如图:
设∠PCD=x,
∵CP平分∠ACD,
∴∠ACP=∠PCD=x,PM=PN,
∴∠ACD=2x,
∵BP平分∠ABC,
∴∠ABP=∠PBC,PF=PM=PN,
∵∠BPC=50°,
∴∠ABP=∠PBC=,
∴,
∴,
∴,
在Rt△APF和Rt△APM中,
∵PF=PM,AP为公共边,
∴Rt△APF≌Rt△APM(HL),
∴∠FAP=∠CAP,
∴;
故答案为:40°;
【点睛】本题考查了三角形的内角和定理,三角形的外角性质,角平分线的性质,以及全等三角形的判定和性质,解题的关键是熟练掌握所学的知识进行解题,正确求出是关键.
6.如图所示,的外角的平分线CP与的平分线相交于点P,若,则_______.
【答案】
【分析】如图(见解析),设,从而可得,先根据三角形的外角性质可求出,再根据角平分线的性质可得,从而可得,然后根据直角三角形全等的判定定理与性质可得,最后根据平角的定义即可得.
【详解】如图,过点P分别作于点M,于点N,于点E,
设,则,
,
,
是的平分线,
,
,
是的平分线,,,
,
同理可得:,
,
在和中,,
,
,即,
又,
,
解得,
故答案为:.
【点睛】本题考查了角平分线的定义与性质、三角形的外角性质、直角三角形全等的判定定理与性质等知识点,通过作辅助线,利用角平分线的性质是解题关键.
三、解答题
7.如图,ABC中,AC=BC,∠ACB=90°,AD平分∠BAC交BC于点D,过点B作BE⊥AD,交AD延长线于点E,F为AB的中点,连接CF,交AD于点G,连接BG.
(1)线段BE与线段AD有何数量关系?并说明理由;
(2)判断BEG的形状,并说明理由.
【答案】(1)BE=AD,见解析;(2)BEG是等腰直角三角形,见解析
【分析】(1)延长BE、AC交于点H,先证明△BAE≌△HAE,得BE=HE=BH,再证明△BCH≌△ACD,得BH=AD,则BE=AD;
(2)先证明CF垂直平分AB,则AG=BG,再证明∠CAB=∠CBA=45°,则∠GAB=∠GBA=22.5°,于是∠EGB=∠GAB+∠GBA=45°,可证明△BEG是等腰直角三角形.
【详解】证:(1)BE=AD,理由如下:
如图,延长BE、AC交于点H,
∵BE⊥AD,
∴∠AEB=∠AEH=90°,
∵AD平分∠BAC,
∴∠BAE=∠HAE,
在△BAE和△HAE中,
,
∴△BAE≌△HAE(ASA),
∴BE=HE=BH,
∵∠ACB=90°,
∴∠BCH=180°﹣∠ACB=90°=∠ACD,
∴∠CBH=90°﹣∠H=∠CAD,
在△BCH和△ACD中,
,
∴△BCH≌△ACD(ASA),
∴BH=AD,
∴BE=AD.
(2)△BEG是等腰直角三角形,理由如下:
∵AC=BC,AF=BF,
∴CF⊥AB,
∴AG=BG,
∴∠GAB=∠GBA,
∵AC=BC,∠ACB=90°,
∴∠CAB=∠CBA=45°,
∴∠GAB=∠CAB=22.5°,
∴∠GAB=∠GBA=22.5°,
∴∠EGB=∠GAB+∠GBA=45°,
∵∠BEG=90°,
∴∠EBG=∠EGB=45°,
∴EG=EB,
∴△BEG是等腰直角三角形.
【点睛】本题考查等腰直角三角形的判定与性质,全等三角形的判定与性质等,理解等腰直角三角形的基本性质,并且掌握全等三角形中常见辅助线的作法是解题关键.
8.已知:如图,在四边形ABCD中,BD平分∠ABC,∠A+∠C=180°,BC>BA.求证:点D在线段AC的垂直平分线上.
【答案】见解析
【分析】在BC上截取BE=BA,连接DE,证明△ABD≌△BED,可得出∠C=∠DEC,则DE=DC,从而得出AD=CD即可证明.
【详解】证:如图,在BC上截取BE=BA,连接DE,
∵BD=BD,∠ABD=∠CBD,
∴△BAD≌△BED,
∴∠A=∠DEB,AD=DE,
∵∠A+∠C=180°,∠BED+∠DEC=180°,
∴∠C=∠DEC,
∴DE=DC,
∴AD=CD,
∴点D在线段AC的垂直平分线上.
【点睛】本题考查全等三角形的判定与性质,以及垂直平分线的判定等,学会做辅助线找出全等三角形是解题的关键.
9.如图所示,在四边形中,平分,求证:.
【答案】详见解析
【分析】过点C分别作于E,于F,由条件可得出△CDF≌△CEB,可得∠B=∠FDC,进而可证明∠B+∠ADC=180°.
【详解】证明:过点C分别作于E,于F,
∵AC平分∠BAD,CE⊥AB于E,于F,
∴CF=CE,
在Rt△CDF与Rt△CEB中,
∴,
,
,
.
【点睛】本题考查全等三角形的判定和性质,关键是根据HL证明△CDF≌△CEB进而得出∠B=∠FDC.
10.已知:如图,AC∥BD,AE、BE分别平分∠CAB和∠ABD,点E在CD上.用等式表示线段AB、AC、BD三者之间的数量关系,并证明.
【答案】AC+BD=AB,理由见见解析
【分析】在BA上截取BF=BD,连接EF,先证得,可得到∠BFE=∠D,再由AC∥BD,可得∠AFE=∠C,从而证得,可得AF=AC,即可求解.
【详解】解:AC+BD=AB,证明如下:
在BA上截取BF=BD,连接EF,如图所示:
∵AE、BE分别平分∠CAB和∠ABD,
∴∠EAF=∠EAC,∠EBF=∠EBD,
在△BEF和△BED中,
,
∴(SAS),
∴∠BFE=∠D,
∵AC∥BD,
∴∠C+∠D=180°,
∵∠AFE+∠BFE=180°,
∴∠AFE+∠D=180°,
∴∠AFE=∠C,
在△AEF和△AEC中,
,
∴(AAS),
∴AF=AC,
∵AF+BF=AB,
∴AC+BD=AB.
【点睛】本题主要考查了全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.
11.在中,BE,CD为的角平分线,BE,CD交于点F.
(1)求证:;
(2)已知.
①如图1,若,,求CE的长;
②如图2,若,求的大小.
【答案】(1)证明见解析;(2)2.5;(3)100°.
【分析】(1)由三角形内角和定理和角平分线得出的度数,再由三角形内角和定理可求出的度数,
(2)在BC上取一点G使BG=BD,构造(SAS),再证明,即可得,由此求出答案;
(3)延长BA到P,使AP=FC,构造(SAS),得PC=BC,,再由三角形内角和可求,,进而可得.
【详解】解:(1)、分别是与的角平分线,
,
,
,
(2)如解(2)图,在BC上取一点G使BG=BD,
由(1)得,
,
,
∴,
在与中,
,
∴(SAS)
∴,
∴,
∴,
∴
在与中,
,
,
,
,
;
∵,,
∴
(3)如解(3)图,延长BA到P,使AP=FC,
,
∴,
在与中,
,
∴(SAS)
∴,,
∴,
又∵,
∴,
又∵,
∴,
∴,,
∴,
【点睛】本题考查的是角平分线的性质、全等三角形的判定与性质,根据题意作出辅助线,构造出全等三角形是解答此题的关键.
12.如图,△ABC中,AB=AC,∠BAC=90°,CD平分∠ACB,BE⊥CD,垂足E在CD的延长线上.求证:BE=CD.
【答案】见解析
【分析】分别延长BE、CA交于点F,首先结合题意推出△CFE≌△CBE,从而得到BE=EF=BF,然后证明△BFA≌△CDA,得到BF=CD,即可得出结论.
【详解】证明:分别延长BE、CA交于点F,
∵BE⊥CD,
∴∠BEC=∠FEC=90°.
∵CD平分∠ACB,
∴∠FCE=∠BCE.
在△CFE与△CBE中,
∵∠BEC=∠FEC,∠FCE=∠BCE,CE=CE,
∴△CFE≌△CBE,
∴BE=EF=BF.
在△CFE与△CAD中,
∵∠F+∠FCE=∠ADC+∠ACD= 90°,
∴∠F=∠ADC.
在△BFA与△CDA中,
∵∠F=∠ADC,∠BAC=∠FAB,AB=AC,
∴△BFA≌△CDA,
∴BF=CD.
∴BE=CD.
【点睛】本题考查全等三角形的判定与性质,理解角平分线的基本定义,熟练运用角平分线的性质构造辅助线,并且准确判定全等三角形是解题关键.
13.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,交BC于点D,过D作DE⊥BA于点E,点F在AC上,且BD=DF.
(1)求证:AC=AE;
(2)若AB=7.4,AF=1.4,求线段BE的长.
【答案】(1)见解析;(2)3
【分析】(1)证明△ACD≌△AED(AAS),即可得出结论;
(2)在AB上截取AM=AF,连接MD,证△FAD≌△MAD(SAS),得FD=MD,∠ADF=∠ADM,再证Rt△MDE≌Rt△BDE(HL),得ME=BE,求出MB=AB-AM=6,即可求解.
【详解】解:(1)证明:∵AD平分∠BAC,
∴∠DAC=∠DAE,
∵DE⊥BA,
∴∠DEA=∠DEB=90°,
∵∠C=90°,
∴∠C=∠DEA=90°,
在△ACD和△AED中,
,
∴△ACD≌△AED(AAS),
∴AC=AE;
(2)在AB上截取AM=AF,连接MD,
在△FAD和△MAD中,
,
∴△FAD≌△MAD(SAS),
∴FD=MD,∠ADF=∠ADM,
∵BD=DF,
∴BD=MD,
在Rt△MDE和Rt△BDE中,
,
∴Rt△MDE≌Rt△BDE(HL),
∴ME=BE,
∵AF=AM,且AF=1.4,
∴AM=1.4,
∵AB=7.4,
∴MB=AB-AM=7.4-1.4=6,
∴BE=BM=3,
即BE的长为3.
【点睛】本题考查了全等三角形的判定与性质、角平分线定义、直角三角形的性质、三角形的外角性质等知识;证明△FAD≌△MAD和Rt△MDE≌Rt△BDE是解题的关键.
14.(1)如图1,射线OP平分∠MON,在射线OM,ON上分别截取线段OA,OB,使OA=OB,在射线OP上任取一点D,连接AD,BD.求证:AD=BD.
(2)如图2,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,求证:BC=AC+AD.
(3)如图3,在四边形ABDE中,AB=9,DE=1,BD=6,C为BD边中点,若AC平分∠BAE,EC平分∠AED,∠ACE=120°,求AE的值.
【答案】(1)见详解;(2)见详解;(3)AE=13
【分析】(1)由题意易得∠AOD=∠BOD,然后易证△AOD≌△BOD,进而问题可求证;
(2)在BC上截取CE=CA,连接DE,由题意易得∠ACD=∠ECD,∠B=30°,则有△ACD≌△ECD,然后可得∠A=∠CED=60°,则根据三角形外角的性质可得∠EDB=∠B=30°,然后可得DE=BE,进而问题可求证;
(3)在AE上分别截取AF=AB,EG=ED,连接CF、CG,同理(2)可证△ABC≌△AFC,△CDE≌△CGE,则有∠ACB=∠ACF,∠DCE=∠GCE,然后可得∠ACF+∠GCE=60°,进而可得△CFG是等边三角形,最后问题可求解.
【详解】证明:(1)∵射线OP平分∠MON,
∴∠AOD=∠BOD,
∵OD=OD,OA=OB,
∴△AOD≌△BOD(SAS),
∴AD=BD.
(2)在BC上截取CE=CA,连接DE,如图所示:
∵∠ACB=90°,∠A=60°,CD平分∠ACB,
∴∠ACD=∠ECD,∠B=30°,
∵CD=CD,
∴△ACD≌△ECD(SAS),
∴∠A=∠CED=60°,AD=DE,
∵∠B+∠EDB=∠CED,
∴∠EDB=∠B=30°,
∴DE=BE,
∴AD=BE,
∵BC=CE+BE,
∴BC=AC+AD.
(3)在AE上分别截取AF=AB=9,EG=ED=1,连接CF、CG,如图所示:
同理(1)(2)可得:△ABC≌△AFC,△CDE≌△CGE,
∴∠ACB=∠ACF,∠DCE=∠GCE,BC=CF,CD=CG,DE=GE=1,
∵C为BD边中点,
∴BC=CD=CF=CG=3,
∵∠ACE=120°,
∴∠ACB+∠DCE=60°,
∴∠ACF+∠GCE=60°,
∴∠FCG=60°,
∴△CFG是等边三角形,
∴FG=CF=CG=3,
∴AE=AF+FG+GE=9+3+1=13.
【点睛】本题主要考查三角形全等的性质与判定、角平分线的定义、等腰三角形的性质与判定及等边三角形的性质与判定,解题的关键是构造辅助线证明三角形全等.
15.如图,已知△ABC中,AB=AC,∠A=108°,BD平分∠ABC.
求证:BC=AB+CD.
【答案】证明见解析
【分析】在BC上截取点E,并使得BE=BA,连接DE,证明△ABD≌△EBD,得到∠DEB=∠BAD=108°,进一步计算出∠DEC=∠CDE=72°得到CD=CE即可证明.
【详解】证明:在线段BC上截取BE=BA,连接DE,如下图所示:
∵BD平分∠ABC,∴∠ABD=∠EBD,
在△ABD和△EBD中: ,
∴△ABD≌△EBD(SAS),
∴∠DEB=∠BAD=108°,
∴∠DEC=180°-108°=72°,又AB=AC,
∴∠C=∠ABC=(180°-108°)÷2=36°,
∴∠CDE=180°-∠C-∠DEC=180°-36°-72°=72°,
∴∠DEC=∠CDE,
∴CD=CE,
∴BC=BE+CE=AB+CD.
【点睛】本题考查了角平分线的定义,三角形内角和定理,全等三角形的判定与性质,等腰三角形性质等,本题的关键是能在BC上截取BE,并使得BE=BA,这是角平分线辅助线和全等三角形的应用的一种常见作法.
16.如图,ABC的外角∠DAC的平分线交BC边的垂直平分线于P点,PD⊥AB于D,PE⊥AC于E.
(1)求证:BD=CE;
(2)若AB=6cm,AC=10cm,求AD的长.
【答案】(1)证明见解析;(2)2
【分析】(1)连接、,根据线段垂直平分线上的点到两端点的距离相等可得,根据角平分线上的点到角的两边距离相等可得 ,然后利用“”证明和全等,根据全等三角形对应边相等证明即可;
(2)利用“”证明和全等,根据全等三角形对应边相等可得,再根据、的长度表示出、,然后解方程即可.
【详解】(1)证明:连接、,
点在的垂直平分线上,
,
是的平分线,
,
在和中,
,
,
;
(2)解:在和中,
,
,
,
,,
,
即,
解得.
【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,线段垂直平分线上的点到两端点的距离相等的性质,全等三角形的判定与性质,熟记性质并作辅助线构造出全等三角形是解题的关键.
17.如图,的外角的平分线与内角的平分线交于点,若,求的度数.
【答案】50°
【分析】根据外角与内角性质得出∠BAC的度数,再利用角平分线的性质以及直角三角形全等的判定,得出∠CAP=∠FAP,即可得出答案.
【详解】延长BA,作PN⊥BD,PF⊥BA,PM⊥AC,
设∠PCD=x°,
∵CP平分∠ACD,
∴∠ACP=∠PCD=x°,PM=PN,
∵BP平分∠ABC,
∴∠ABP=∠PBC,PF=PN,
∴PF=PM,
∵∠BPC=40°,
∴∠ABP=∠PBC=∠PCD-∠BPC=(x-40)°,
∴∠BAC=∠ACD-∠ABC=2x°-(x°-40°)-(x°-40°)=80°,
∴∠CAF=100°,
在Rt△PFA和Rt△PMA中,
,
∴Rt△PFA≌Rt△PMA(HL),
∴∠CAP=∠FAP,
又∵∠CAP+∠PAF=∠CAF,
∴∠CAP =50°.
【点睛】本题主要考查了角平分线的性质以及三角形外角的性质和直角三角全等的判定等知识,根据角平分线的性质得出PM=PN=PF是解决问题的关键.
18.四边形中,,连接.
(1)如图1,若平分,求证:.
(2)如图2,若,,求证:.
(3)如图3,在(2)的条件下,作于点,连接,若,,求的长度.
【答案】(1)见解析;(2)见解析;(3)
【分析】(1)过点分别作于点,交的延长线于点,根据角平分线的性质可得,结合已知条件HL证明,继而可得,根据平角的定义以及等量代换即可证明;
(2)过点分别作于点,交的延长线于点,过点作,根据含30度角的直角三角形的性质可得,根据三线合一,可得,进而可得,根据角平分线的判定定理可推出,进而即可证明;
(3)先证明四边形是矩形,证明,进而证明四边形是正方形,设,根据(2)的结论以及三角形内角和定理,求得,进而求得,根据含30度角的直角三角形的性质,即可求得,进而在中,勾股定理即可求得的长.
【详解】(1)如图,过点分别作于点,交的延长线于点,
平分,
,
在与中
(HL)
即
(2)如图,过点作交的延长线于点,过点作,
,
即
(3)如图,过点分别作于点,交的延长线于点,
,
四边形是矩形
在与中
,
四边形是正方形
设
在中
在中,
【点睛】本题考查了三角形全等的性质与判定,角平分线的性质与判定,三角形内角和定理,三角形的外角性质,勾股定理,正方形的性质与判定,正确的添加辅助线是解题的关键.
19.在△ABC中,AD为△ABC的角平分线,点E是直线BC上的动点.
(1)如图1,当点E在CB的延长线上时,连接AE,若∠E=48°,AE=AD=DC,则∠ABC的度数为 .
(2)如图2,AC>AB,点P在线段AD延长线上,比较AC+BP与AB+CP之间的大小关系,并证明.
(3)连接AE,若∠DAE=90°,∠BAC=24°,且满足AB+AC=EC,请求出∠ACB的度数(要求:画图,写思路,求出度数).
【答案】(1);(2),见解析;(3)44°或104°;详见解析.
【分析】(1)根据等边对等角,可得,,再根据三角形外角的性质求出,由此即可解题;
(2)在AC边上取一点M使AM=AB,构造,根据即可得出答案;
(3)画出图形,根据点E的位置分四种情况,当点E在射线CB延长线上,延长CA到G,使AG=AB,可得,可得,设,则;根据∠BAC=24°,AD为△ABC的角平分线,可得,可证(SAS),得出,利用还有 ,列方程;当点E在BD上时,∠EAD<90°,不成立;当点E在CD上时,∠EAD<90°,不成立;当点E在BC延长线上,延长CA到G,使AG=AB, 可得,得出,设,则;∠BAC=24°,根据AD为△ABC的角平分线,得出,证明(SAS),得出,利用三角形内角和列方程,解方程即可.
【详解】解:(1)∵AE=AD=DC,
∴,,
∵,,
∴,
∵AD为△ABC的角平分线,即,
∴;
∴
(2)如图2,
在AC边上取一点M使AM=AB,连接MP,
在和中,
,
∴(SAS),
∴,
∵,,
∴,
∴;
(3)如图,点E在射线CB延长线上,延长CA到G,使AG=AB,
∵AB+AC=EC,
∴AG+AC=EC,即,
∴,
设,则;
又∠BAC=24°,AD为△ABC的角平分线,
∴,
又∵,
∴,,
∴,
在和中,
,
∴(SAS),
∴,
又∵,
∴,
解得:,
∴;
当点E在BD上时,∠EAD<90°,不成立;
当点E在CD上时,∠EAD<90°,不成立;
如图,点E在BC延长线上,延长CA到G,使AG=AB,
∵AB+AC=EC,
∴AG+AC=EC,即,
∴,
设,则;
又∵∠BAC=24°,AD为△ABC的角平分线,
∴,
又∵,
∴,,
∴,
在和中,
,
∴(SAS),
∴,
∴,
解得:,
∴.
∴∠ACB的度数为44°或104°.
【点睛】本题主要考查了等腰三角形性质、全等三角形判定和性质,角平分线,三角形外角性质,三角形内角和,解一元一次方程,根据角平分线模型构造全等三角形转换线段和角的关系是解题关键.
20.如图,已知在四边形ABCD中,BD是的平分线,.2 求证:.
【答案】见解析
【分析】方法一,在BC上截取BE,使,连接DE,由角平分线的定义可得,根据全等三角形的判定可证和全等,再根据全等三角形的性质可得,,由AD=CD等量代换可得,继而可得,由于,可证;
方法2,延长BA到点E,使,由角平分线的定义可得,根据全等三角形的判定可证和全等,继而可得,.由,可得,继而求得,由,继而可得;
方法3, 作于点E,交BA的延长线于点F,由角平分线的定义可得,由,,可得,根据全等三角形的判定可证和全等,继而可得,再根据HL定理可得可证.
【详解】解:方法1 截长如图,在BC上截取BE,使,
连接DE,
因为BD是的平分线,
所以.
在和中,
因为
所以,
所以,.
因为,
所以,
所以.
因为,
所以.
方法2 补短
如图,延长BA到点E,使.
因为BD是的平分线,
所以
在和中,
因为,
所以,
所以,.
因为,
所以,
所以.
因为,
所以.
方法3 构造直角三角形全等
作于点E.交BA的延长线于点F
因为BD是的平分线,
所以.
因为,,
所以,
在和中,
因为,
所以,
所以.
在和中,
因为,
所以,
所以.
因为,
所以.
21.阅读下面材料:小明遇到这样一个问题:
如图一,△ABC中,∠A=90°,AB=AC,BD平分∠ABC,猜想线段AD与DC数量关系.小明发现可以用下面方法解决问题:作DE⊥BC交BC于点E:
(1)根据阅读材料可得AD与DC的数量关系为__________.
(2)如图二,△ABC中,∠A=120°,AB=AC,BD平分∠ABC,猜想线段AD与DC的数量关系,并证明你的猜想.
(3)如图三,△ABC中,∠A=100°,AB=AC,BD平分∠ABC,猜想线段AD与BD、BC的数量关系,并证明你的猜想.
【答案】(1)CD=AD;(2)CD=AD;(3)BC=AD+BD.
【分析】(1)由角平分线的性质可得AD=DE,根据∠A=90°,AB=AC,可得∠C=45°,由DE⊥BC可得△DEC是等腰直角三角形,可得CD=DE,进而可得答案;(2)在BC上截取BE=AB,连接DE,利用SAS可证明△ABD≌△EBD,可得AD=DE,∠BED=∠A=120°,由等腰三角形的性质可得∠C=30°,利用三角形外角性质可得∠CDE=90°,利用含30°角的直角三角形的性质即可得答案;(3)在BC上取一点E,使BE=BD,作DF⊥BA于F,DG⊥BC于G,由角平分线的性质就可以得出DF=DG,利用AAS可证明△DAF≌△DEG,可得 DA=DE,利用外角性质可求出∠EDC=40°,进而可得DE=CE,即可得出结论.
【详解】(1)∵∠A=90°,BD平分∠ABC,DE⊥BC,
∴DE=AD,
∵∠A=90°,AB=AC,
∴∠C=45°,
∴△CDE是等腰直角三角形,
∴CD=DE=AD,
故答案为CD=AD
(2)如图,在BC上截取BE=AB,连接DE,
∵BD平分∠ABC,
∴∠ABD=∠DBE,
在△ABD和△EBD中,,
∴△ABD≌△EBD,
∴DE=AD,∠BED=∠A=120°,
∵AB=AC,
∴∠C=∠ABC=30°,
∴∠CDE=∠BED-∠C=90°,
∴CD=DE=AD.
(3)如图,在BC上取一点E,是BE=BD,作DF⊥BA于F,DG⊥BC于G,
∴∠DFA=∠DGE=90°.
∵BD平分∠ABC,DF⊥BA,DG⊥BC,
∴DF=DG.
∵∠BAC=100°,AB=AC,
∴∠FAD=80°,∠ABC=∠C=40°,
∴∠DBC=20°,
∵BE=BD,
∴∠BED=∠BDE=80°,
∴∠FAD=∠BED.
在△DAF和△DEG中,,
∴△DAF≌△DEG(AAS),
∴AD=ED.
∵∠BED=∠C+∠EDC,
∴80°=40+∠EDC,
∴∠EDC=40°,
∴∠EDC=∠C,
∴DE=CE,
∴AD=CE.
∵BC=BE+CE,
∴BC=BD+AD.
【点睛】本题考查了等腰三角形的性质的运用,角平分线的性质的运用,全等三角形的判定及性质的运用,解答时合理添加辅助线是解答本题的关键.
特点
CC
O
BB
AAA
N
M
利用角平分线图形的对称性,在角的两边构造对称全等三角形,可以得到对应边、对应角相等。利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧。
结论
三边对应相等的三角戏是全等三角形C
O
B
(SSS)、全等三角形对应角相等
解决方案
角平分线+垂直两边型
角平分线性质定理:角的平分线上的点作角两边垂直段构成的两个RT三角形全等.
【证明】
∵ OC为∠AOB的角平分线,
D为OC上一点DE⊥OA,DF⊥OB
∴
∴DE=DF
角平分线+垂直角平分线型
构造此模型可以利用等腰三角形的“三线合一”,也可以得到两个全等的直角三角形,进而得到对应边、对应角相等。这个模型巧妙地把角平分线和三线合一联系了起来。
角平分线+平行线
如图,P 是∠MON 的平分线上一点,过点 P 作 PQ∥ON,交 OM 于点 Q。
结论:△POQ 是等腰三角形。
【证明】
∵PQ∥ON
∴∠PON=∠OPQ
又∵OP 是∠MON 的平分线
∴∠POQ=∠PON
∴∠POQ=∠OPQ
∴△POQ是等腰三角形
相关试卷
这是一份最新中考数学难点突破与经典模型精讲练 专题09 相似三角形中的“A”字型相似模型 (全国通用),文件包含专题09相似三角形中的“A”字型相似模型原卷版docx、专题09相似三角形中的“A”字型相似模型解析版docx等2份试卷配套教学资源,其中试卷共61页, 欢迎下载使用。
这是一份最新中考数学难点突破与经典模型精讲练 专题06 全等三角形中的截长补短模型 (全国通用),文件包含专题06全等三角形中的截长补短模型原卷版docx、专题06全等三角形中的截长补短模型解析版docx等2份试卷配套教学资源,其中试卷共52页, 欢迎下载使用。
这是一份最新中考数学难点突破与经典模型精讲练 专题05 全等三角形与矩形翻折模型 (全国通用),文件包含专题05全等三角形与矩形翻折模型原卷版docx、专题05全等三角形与矩形翻折模型解析版docx等2份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。