所属成套资源:【中考二轮】2023年中考数学难点突破与经典模型精讲练(全国通用)
最新中考数学难点突破与经典模型精讲练 专题10 相似三角形中的“8”字型相似模型 (全国通用)
展开
这是一份最新中考数学难点突破与经典模型精讲练 专题10 相似三角形中的“8”字型相似模型 (全国通用),文件包含专题10相似三角形中的“8”字型相似模型原卷版docx、专题10相似三角形中的“8”字型相似模型解析版docx等2份试卷配套教学资源,其中试卷共59页, 欢迎下载使用。
1、以专题复习为主。如选择题、填空题的专项练习,要把握准确度和时间的安排。加强对二次函数与几何图形结合的综合性试题、实际应用题等专题的练习,深化对常考题型的熟悉程度。在函数复习过程中,如果考生未能完全理解简单实例中的数量关系和变化规律,针对此类问题,在专项复习中,可以通过选择题、填空题的专项练习,进行突破,如“读懂图象信息问题”等,将复杂问题由浅入深,层层分解,提高分析和判断能力。
2、重视方法思维的训练。对初中数学所涉及的函数思想、方程思想、数形结合思想、分类讨论思想、转化与化归思想、整体思想等数学思想方法,要通过典型试题的训练,进一步渗透和深刻理解其内涵,重要处舍得投入时间与精力。强化解题过程中常用的配方法、待定系数法等通法。
3、拓宽思维的广度,培养多角度、多维度思考问题的习惯。将专项复习中的共性习题串连起来,通过一题多解,积极地探求解决问题的最优解法,这样,对于解决难度较大的压轴题会有很大的帮助。
专题10 相似三角形中的“8”字型相似模型
【模型展示】
【模型证明】
【题型演练】
一、单选题
1.如图,正方形的对角线、相交于点,是的中点,交于点,若,则等于
A.3B.4C.6D.8
2.如图,在△ABC中,BC=6,,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于点Q,当CQ=CE时,EP+BP的值为( )
A.9B.12C.18D.24
3.如图,在平行四边形ABCD中,∠ABC的平分线交AC于点E,交AD于点F,交CD的延长线于点G,若AF=2FD,则的值为( )
A.B.C.D.
4.如图,平行四边形ABCD的对角线AC,BD相交于点O,CE平分∠DCB交BD于点F,且∠ABC=60°,AB=2BC,连接OE,下列结论:①∠ACD=30°;②S平行四边形ABCD=;③OE:AC=1:4;④S△OCF=2S△OEF.其中正确的有( )
A.1个B.2个
C.3个D.4个
5.如图,在平行四边形ABCD中,点E是AD上一点,,连接BE交AC于点G,延长BE交CD的延长线于点F,则的值为( )
A.B.C.D.
6.如图,在▱ABCD中,E为CD的中点,连接AE、BD,且AE、BD交于点F,则:为( )
A.1:5B.4:25C.4:31D.4:35
7.如图,在平行四边形ABCD中,E为边AD的中点,连接AC,BE交于点F.若△AEF 的面积为2,则△ABC的面积为( )
A.8B.10C.12D.14
8.如图,,,分别交于点G,H,则下列结论中错误的是( )
A.B.C.D.
二、填空题
9.如图,G为ABC的重心,AG=12,则AD=__________.
10.如图在平行四边形ABCD中,E是CD的中点,F是AE的中点,CF交BE于点G,若,则___.
11.如图,在正方形ABCD中,点E在BC边上,连接AE,∠DAE的平分线AG与CD边交于点G,与BC的延长线交于点F.设λ(λ>0).
(1)若AB=2,λ=1,求线段CF的长为________;
(2)连接EG,若EG⊥AF,则λ的值为_______.
12.如图,在中,,,点是的中点,连结,过点作,分别交、于点、,与过点且垂直于的直线相交于点,连结.给出以下五个结论:①;②;③点是的中点;④;⑤.其中正确结论的序号是________.
13.如图,在正方形中,点为边上一点,且,点为对角线上一点,且,连接交于点,过点作于点,若,则正方形的边长为_______cm.
三、解答题
14.如图,为平行四边形的边延长线上的一点,连接.交于,交于.
求证:.
15.已知:如图,四边形ABCD是平行四边形,在边AB的延长线上截取BE=AB,点F在AE的延长线上,CE和DF交于点M,BC和DF交于点N,联结BD.
(1)求证:△BND∽△CNM;
(2)如果AD2=AB•AF,求证:CM•AB=DM•CN.
16.如图1,在正方形ABCD中,点E是CD上一点(不与C,D两点重合),连接BE,过点C作CH⊥BE于点F,交对角线BD于点G,交AD边于点H,连接GE.
(1)求证:CH=BE;
(2)如图2,若点E是CD的中点,当BE=12时,求线段GE的长;
(3)设正方形ABCD的面积为S1,四边形DEGH的面积为S2,点E将CD分成1∶2两部分,求的值.
17.如图,在平行四边形中,E为边的中点,连接,若的延长线和的延长线相交于点F.
(1)求证:;
(2)连接和相交于点为G,若的面积为2,求平行四边形的面积.
18.综合与实践:
数学活动课上,老师让同学们根据下面情境提出问题并解答.
问题情境:在中,点P是边上一点.将沿直线折叠,点D的对应点为E.
“兴趣小组”提出的问题是:如图1,若点P与点A重合,过点E作,与交于点F,连接,则四边形是菱形.
(1)数学思考:请你证明“兴趣小组”提出的问题;
(2)拓展探究:“智慧小组”提出的问题是:如图2,当点P为的中点时,延长交于点F,连接.试判断与的位置关系,并说明理由.
请你帮助他们解决此问题.
(3)问题解决:“创新小组”在前两个小组的启发下,提出的问题是:如图3,当点E恰好落在边上时,,,.则的长为___________.(直接写出结果)
19.如图,在等边边长为6,O是中心;在中,,,.将绕点A按顺时针方向旋转一周.
(1)当、分别在、边上,连结、,求的面积;
(2)设所在直线与的边或交于点F,当O、D、E三点在一条直线上,求的长;
(3)连结,取中点M,连结,的取值范围为_________.
20.如图1,ΔABC中,AB=AC,点D在BA的延长线上,点E在BC上,DE=DC,点F是DE与AC的交点.
(1)求证:∠BDE=∠ACD;
(2)若DE=2DF,过点E作EG//AC交AB于点G,求证:AB=2AG;
(3)将“点D在BA的延长线上,点E在BC上”改为“点D在AB上,点E在CB的延长线上”,“点F是DE与AC的交点”改为“点F是ED的延长线与AC的交点”,其它条件不变,如图2.
①求证:AB·BE=AD·BC;
②若DE=4DF,请直接写出SΔABC:SΔDEC的值.
21.如图,在等腰中,,点、分别在轴、轴上.
(1)如图①,若点的横坐标为5,求点的坐标;
(2)如图②,若轴恰好平分,交轴于点,过点作轴于点,求的值;
(3)如图③,若点的坐标为,点在轴的正半轴上运动时,分别以、为边在第一、第二象限中作等腰,等腰,连接交轴于点,当点在轴上移动时,的长度是否发生改变?若不变求的值;若变化,求的取值范围.
22.如图1,在正方形ABCD中,点E是CD上一点(不与C,D两点重合),连接BE,过点C作CH⊥BE于点F,交对角线BD于点G,交AD边于点H,连接GE.
(1)求证:DH=CE;
(2)如图2,若点E是CD的中点,当BE=8时,求线段GH的长;
(3)设正方形ABCD的面积为S1,四边形DEGH的面积为S2,当时,值为 .(直接写答案)
23.(1)问题背景:如图1,正方形ABCD中,F在直线CD上,E在直线BC上.若∠EAF=45°,求证:BE+FD=EF;
(2)迁移应用:如图2,将正方形ABCD的一部分沿GH翻折,使A点的对应点E在BC上,且AD的对应边EM交CD于F点.若BE=3,EC=2,求EF的长;
(3)联系拓展:如图3,正方形ABCD中,E、Q在CD上,F在BC上,若EF=EA,∠FQA=∠FEA.若∠CFQ=34°,则∠QAD=_______°.
24.在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.
(1)如图1,当α=60°时,求证:PA=DC;
(2)如图2,当α=120°时,猜想PA和DC的数量关系并说明理由.
(3)当α=120°时,若AB=6,BP=,请直接写出点D到CP的距离.
特点
结论
AB∥CD⇔△AOB∽△COD⇔eq \f(AB,CD)=eq \f(OA,OC)=eq \f(OB,OD).
解决方案
∠A=∠D⇔△AOB∽△DOC⇔eq \f(AB,CD)=eq \f(OA,OD)=eq \f(OB,OC).
相关试卷
这是一份最新中考数学难点突破与经典模型精讲练 专题17 最值问题中的将军饮马模型 (全国通用),文件包含专题17最值问题中的将军饮马模型原卷版docx、专题17最值问题中的将军饮马模型解析版docx等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。
这是一份最新中考数学难点突破与经典模型精讲练 专题13 相似三角形中的母子型相似模型 (全国通用),文件包含专题13相似三角形中的母子型相似模型原卷版docx、专题13相似三角形中的母子型相似模型解析版docx等2份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。
这是一份最新中考数学难点突破与经典模型精讲练 专题12 相似三角形中的旋转型相似模型 (全国通用),文件包含专题12相似三角形中的旋转型相似模型原卷版docx、专题12相似三角形中的旋转型相似模型解析版docx等2份试卷配套教学资源,其中试卷共65页, 欢迎下载使用。