![专题07 全等三角形中的倍长中线模型(原卷版)第1页](http://m.enxinlong.com/img-preview/2/3/15450680/0-1709711182253/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题07 全等三角形中的倍长中线模型(原卷版)第2页](http://m.enxinlong.com/img-preview/2/3/15450680/0-1709711182310/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题07 全等三角形中的倍长中线模型(原卷版)第3页](http://m.enxinlong.com/img-preview/2/3/15450680/0-1709711182320/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题07 全等三角形中的倍长中线模型(解析版)第1页](http://m.enxinlong.com/img-preview/2/3/15450680/1-1709711193683/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题07 全等三角形中的倍长中线模型(解析版)第2页](http://m.enxinlong.com/img-preview/2/3/15450680/1-1709711193697/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题07 全等三角形中的倍长中线模型(解析版)第3页](http://m.enxinlong.com/img-preview/2/3/15450680/1-1709711193715/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:【中考二轮】2023年中考数学难点突破与经典模型精讲练(全国通用)
最新中考数学难点突破与经典模型精讲练 专题07 全等三角形中的倍长中线模型 (全国通用)
展开
这是一份最新中考数学难点突破与经典模型精讲练 专题07 全等三角形中的倍长中线模型 (全国通用),文件包含专题07全等三角形中的倍长中线模型原卷版docx、专题07全等三角形中的倍长中线模型解析版docx等2份试卷配套教学资源,其中试卷共54页, 欢迎下载使用。
1、以专题复习为主。如选择题、填空题的专项练习,要把握准确度和时间的安排。加强对二次函数与几何图形结合的综合性试题、实际应用题等专题的练习,深化对常考题型的熟悉程度。在函数复习过程中,如果考生未能完全理解简单实例中的数量关系和变化规律,针对此类问题,在专项复习中,可以通过选择题、填空题的专项练习,进行突破,如“读懂图象信息问题”等,将复杂问题由浅入深,层层分解,提高分析和判断能力。
2、重视方法思维的训练。对初中数学所涉及的函数思想、方程思想、数形结合思想、分类讨论思想、转化与化归思想、整体思想等数学思想方法,要通过典型试题的训练,进一步渗透和深刻理解其内涵,重要处舍得投入时间与精力。强化解题过程中常用的配方法、待定系数法等通法。
3、拓宽思维的广度,培养多角度、多维度思考问题的习惯。将专项复习中的共性习题串连起来,通过一题多解,积极地探求解决问题的最优解法,这样,对于解决难度较大的压轴题会有很大的帮助。
专题07 全等三角形中的倍长中线模型
【模型展示】
【模型证明】
【题型演练】
一、解答题
1.如图,中,AD是BC边上的中线,E,F为直线AD上的点,连接BE,CF,且.
(1)求证:≌;
(2)若,,试求DE的长.
2.如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,小明发现,用已学过的“倍长中线”加倍构造全等,就可以测量CD与AB数量关系.请根据小明的思路,写出CD与AB的数景关系,并证明这个结论.
3.我们规定:有两组边相等,且它们所夹的角互补的两个三角形叫兄弟三角形.如图,OA=OB,OC=OD,∠AOB=∠COD=90°,回答下列问题:
(1)求证:△OAC和△OBD是兄弟三角形.
(2)“取BD的中点P,连接OP,试说明AC=2OP.”聪明的小王同学根据所要求的结论,想起了老师上课讲的“中线倍长”的辅助线构造方法,解决了这个问题,按照这个思路回答下列问题.
①请在图中通过作辅助线构造△BPE≌△DPO,并证明BE=OD;
②求证:AC=2OP.
4.【发现问题】
小强在一次学习过程中遇到了下面的问题:
如图1,AD是△ABC的中线,若AB=8,AC=6,求AD的取值范围.
【探究方法】
小强所在学习小组探究发现:延长AD至点E,使ED=AD,连接BE.可证出△ADC与△EDB,利用全等三角形的性质可将已知的边长与AD转化到同一个△ABE中,进而求出AD的取值范围.
方法小结:从上面思路可以看出,解决问题的关键是将中线AD延长一倍,构造出全等三角形,我们把这种方法叫做倍长中线法.
【应用方法】
(1)请你利用上面解答问题的方法思路,写出求AD的取值范围的过程;
【拓展应用】
(2)已知:如图2,AD是△ABC的中线,BA=BC,点E在BC的延长线上,EC=BC.写出AD与AE之间的数量关系并证明.
5.[问题背景]
①如图1,CD为△ABC的中线,则有S△ACD=S△BCD;
②如图2,将①中的∠ACB特殊化,使∠ACB=90°,则可借助“面积法”或“中线倍长法”证明AB=2CD;
[问题应用]如图3,若点G为△ABC的重心(△ABC的三条中线的交点),CG⊥BG,若AG×BC=16,则△BGC面积的最大值是( )
A.2B.8C.4D.6
6.先阅读,再回答问题:如图1,已知△ABC中,AD为中线.延长AD至E,使DE=AD.在△ABD和△ECD中,AD=DE,∠ADB=∠EDC,BD=CD,所以,△ABD≌△ECD(SAS),进一步可得到AB=CE,AB∥CE等结论.
在已知三角形的中线时,我们经常用“倍长中线”的辅助线来构造全等三角形,并进一步解决一些相关的计算或证明题.
解决问题:如图2,在△ABC中,AD是三角形的中线,F为AD上一点,且BF=AC,连结并延长BF交AC于点E,求证:AE=EF.
7.(1)如图1,若△ABC是直角三角形,∠BAC=90°,点D是BC的中点,延长AD到点E,使DE=AD,连接CE,可以得到△ABD≌△ECD,这种作辅助线的方法我们通常叫做“倍长中线法”.求证:△ACE是直角三角形
(2)如图2,△ABC是直角三角形,∠BAC=90°,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF.试说明BE2+CF2=EF2;
(3)如图3,在(2)的条件下,若AB=AC,BE=12,CF=5,求△DEF的面积.
8.(1)阅读理解:课外兴趣小组活动时,老师提出了如下问题:
在△ABC中,AB=9,AC=5,求BC边上的中线AD的取值范围.
小明在组内经过合作交流,得到了如下的解决方法(如图1):
①延长AD到Q,使得DQ=AD;
②再连接BQ,把AB、AC、2AD集中在△ABQ中;
③利用三角形的三边关系可得4
相关试卷
这是一份最新中考数学难点突破与经典模型精讲练 专题08 全等三角形中的角平分线模型 (全国通用),文件包含专题08全等三角形中的角平分线模型原卷版docx、专题08全等三角形中的角平分线模型解析版docx等2份试卷配套教学资源,其中试卷共52页, 欢迎下载使用。
这是一份最新中考数学难点突破与经典模型精讲练 专题06 全等三角形中的截长补短模型 (全国通用),文件包含专题06全等三角形中的截长补短模型原卷版docx、专题06全等三角形中的截长补短模型解析版docx等2份试卷配套教学资源,其中试卷共52页, 欢迎下载使用。
这是一份最新中考数学难点突破与经典模型精讲练 专题05 全等三角形与矩形翻折模型 (全国通用),文件包含专题05全等三角形与矩形翻折模型原卷版docx、专题05全等三角形与矩形翻折模型解析版docx等2份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)