终身会员
搜索
    上传资料 赚现金

    最新中考数学难点突破与经典模型精讲练 专题04 全等三角形中的对角互补模型 (全国通用)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题04 全等三角形中的对角互补模型(原卷版).docx
    • 解析
      专题04 全等三角形中的对角互补模型(解析版).docx
    专题04 全等三角形中的对角互补模型(原卷版)第1页
    专题04 全等三角形中的对角互补模型(原卷版)第2页
    专题04 全等三角形中的对角互补模型(原卷版)第3页
    专题04 全等三角形中的对角互补模型(解析版)第1页
    专题04 全等三角形中的对角互补模型(解析版)第2页
    专题04 全等三角形中的对角互补模型(解析版)第3页
    还剩10页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    最新中考数学难点突破与经典模型精讲练 专题04 全等三角形中的对角互补模型 (全国通用)

    展开

    这是一份最新中考数学难点突破与经典模型精讲练 专题04 全等三角形中的对角互补模型 (全国通用),文件包含专题04全等三角形中的对角互补模型原卷版docx、专题04全等三角形中的对角互补模型解析版docx等2份试卷配套教学资源,其中试卷共59页, 欢迎下载使用。
    1、以专题复习为主。如选择题、填空题的专项练习,要把握准确度和时间的安排。加强对二次函数与几何图形结合的综合性试题、实际应用题等专题的练习,深化对常考题型的熟悉程度。在函数复习过程中,如果考生未能完全理解简单实例中的数量关系和变化规律,针对此类问题,在专项复习中,可以通过选择题、填空题的专项练习,进行突破,如“读懂图象信息问题”等,将复杂问题由浅入深,层层分解,提高分析和判断能力。
    2、重视方法思维的训练。对初中数学所涉及的函数思想、方程思想、数形结合思想、分类讨论思想、转化与化归思想、整体思想等数学思想方法,要通过典型试题的训练,进一步渗透和深刻理解其内涵,重要处舍得投入时间与精力。强化解题过程中常用的配方法、待定系数法等通法。
    3、拓宽思维的广度,培养多角度、多维度思考问题的习惯。将专项复习中的共性习题串连起来,通过一题多解,积极地探求解决问题的最优解法,这样,对于解决难度较大的压轴题会有很大的帮助。
    专题04 全等三角形中的对角互补模型
    【模型展示】
    【模型证明】
    【题型演练】
    一、单选题
    1.Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论
    ①(BE+CF)=BC,②,③AD·EF,④AD≥EF,⑤AD与EF可能互相平分,
    其中正确结论的个数是【 】
    A.1个B.2个C.3个D.4个
    二、填空题
    2.如图,在Rt△ABC和Rt△BCD中,∠BAC=∠BDC=90°,BC=8,AB=AC,∠CBD=30°,BD=4,M,N分别在BD,CD上,∠MAN=45°,则△DMN的周长为_____.
    3.如图,在四边形中,于,则的长为__________
    三、解答题
    4.(1)如图(1)点P是正方形ABCD的边CD上一点(点P与点C,D不重合),点E在BC的延长线上,且CE=CP,连接BP,DE.求证:△BCP≌△DCE;
    (2)直线EP交AD于F,连接BF,FC.点G是FC与BP的交点.
    ①若CD=2PC时,求证:BP⊥CF;
    ②若CD=n•PC(n是大于1的实数)时,记△BPF的面积为S1,△DPE的面积为S2.求证:S1=(n+1)S2.
    5.已知,△ABC是边长为4cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC运动,且它们的速度均为1cm/s.当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s).
    (1)如图1,连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.
    (2)如图2,当t为何值时,△PBQ是直角三角形?
    (3)如图3,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,请直接写出∠CMQ度数.
    6.如图1,在等腰直角三角形ABC中,AB=AC,∠BAC=90°,点E,F分别为AB,AC的中点,H为线段EF上一动点(不与点E,F重合),过点A作AG⊥AH且AG=AH,连接GC,HB.
    (1)证明:AHB≌AGC;
    (2)如图2,连接GF,HG,HG交AF于点Q.
    ①证明:在点H的运动过程中,总有∠HFG=90°;
    ②当AQG为等腰三角形时,求∠AHE的度数.
    7.回答问题
    (1)【初步探索】如图1:在四边形ABCD中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF=BE+FD,探究图中∠BAE、∠FAD、∠EAF之间的数量关系.
    小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是_______________;
    (2)【灵活运用】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;
    (3)【拓展延伸】知在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请直接写出∠EAF与∠DAB的数量关系.
    8.在内有一点,过点分别作,,垂足分别为,.且,点,分别在边和上.
    (1)如图1,若,请说明;
    (2)如图2,若,,猜想,,具有的数量关系,并说明你的结论成立的理由.
    9.如图1,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E,F分别在四边形ABCD的边BC,CD上,∠EAF=∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系.
    (1)思路梳理
    将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合,由∠B+∠ADC=180°,得∠FDG=180°,即点F,D,G三点共线,易证△AFG≌△AFE,故EF,BE,DF之间的数量关系为__;
    (2)类比引申
    如图2,在图1的条件下,若点E,F由原来的位置分别变到四边形ABCD的边CB,DC延长线上,∠EAF=∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.
    (3)联想拓展
    如图3,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠DAE=45°,若BD=1,EC=2,直接写出DE的长为________________.
    10.五边形ABCDE中,,,,求证:AD平分∠CDE.
    11.探究问题:
    (1)方法感悟:
    如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠BAF=45°,连接EF,求证DE+BF=EF.感悟解题方法,并完成下列填空:将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴ ∠ABG+∠ABF=90°+90°=180°,因此,点G,B,F在同一条直线上.
    ∵ ∠EAF=45°∴ ∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
    ∵ ∠1=∠2,∠1+∠3=45°.
    即∠GAF=∠________.
    又AG=AE,AF=AE
    ∴ △GAF≌△________.
    ∴ _________=EF,故DE+BF=EF.
    (2)方法迁移:
    如图②,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.
    12.在中,,,于点,
    (1)如图1,点,分别在,上,且,当,时,求线段的长;
    (2)如图2,点,分别在,上,且,求证:;
    (3)如图3,点在的延长线上,点在上,且,求证:;
    13.如图,△ABC是边长为4的等边三角形,点D是线段BC的中点,∠EDF=120°,把∠EDF绕点D旋转,使∠EDF的两边分别与线段AB、AC交于点E、F.
    (1)当DF⊥AC时,求证:BE=CF;
    (2)在旋转过程中,BE+CF是否为定值?若是,求出这个定值;若不是,请说明理由
    14.在中,∠BAC=90°,,点D为直线BC上一动点(点D不与B,C重合),以AD为直角边在AD右侧作等腰直角三角形ADE(,),连接CE.
    (1)如图1,当点D在线段BC上时,猜想:BC与CE的位置关系,并说明理由;
    (2)如图2,当点D在线段CB的延长线上时,(1)题的结论是否仍然成立?说明理由;
    (3)如图3,当点D在线段BC的延长线上时,结论(1)题的结论是否仍然成立?不需要说明理由.
    15.如图,我们把对角线互相垂直的四边形叫做“垂美四边形”.
    (1)性质探究:如图1.已知四边形ABCD中,AC⊥BD.垂足为O,求证:AB2+CD2=AD2+BC2;
    (2)解决问题:已知AB=5.BC=4,分别以△ABC的边BC和AB向外作等腰Rt△BCE和等腰Rt△ABD;
    ①如图2,当∠ACB=90°,连接DE,求DE的长;
    ②如图3.当∠ACB≠90°,点G、H分别是AD、AC中点,连接GH.若GH=2,则S△ABC= .
    16.(1)如图①,在四边形中,,,,分别是边,上的点,且.请直接写出线段,,之间的数量关系:__________;
    (2)如图②,在四边形中,,,,分别是边,上的点,且,(1)中的结论是否仍然成立?请写出证明过程;
    (3)在四边形中,,,,分别是边,所在直线上的点,且.请画出图形(除图②外),并直接写出线段,,之间的数量关系.
    17.四边形是由等边和顶角为的等腰排成,将一个角顶点放在处,将角绕点旋转,该交两边分别交直线、于、,交直线于、两点.
    (1)当、都在线段上时(如图1),请证明:;
    (2)当点在边的延长线上时(如图2),请你写出线段,和之间的数量关系,并证明你的结论;
    (3)在(1)的条件下,若,,请直接写出的长为 .
    18.如图1,四边形ABCD中,BD⊥AD,E为BD上一点,AE=BC,CE⊥BD,CE=ED
    (1)已知AB=10,AD=6,求CD;
    (2)如图2,F为AD上一点,AF=DE,连接BF,交BF交AE于G,过G作GH⊥AB于H,∠BGH=75°.求证:BF=2GH+EG.
    19.问题背景
    如图(1),在四边形ABCD中,∠B+∠D=180°,AB=AD,∠BAD=α,以点A为顶点作一个角,角的两边分别交BC,CD于点E,F,且∠EAFα,连接EF,试探究:线段BE,DF,EF之间的数量关系.
    (1)特殊情景
    在上述条件下,小明增加条件“当∠BAD=∠B=∠D=90°时”如图(2),小明很快写出了:BE,DF,EF之间的数量关系为______.
    (2)类比猜想
    类比特殊情景,小明猜想:在如图(1)的条件下线段BE,DF,EF之间的数量关系是否仍然成立?若成立,请你帮助小明完成证明;若不成立,请说明理由.
    (3)解决问题
    如图(3),在△ABC中,∠BAC=90°,AB=AC=4,点D,E均在边BC上,且∠DAE=45°,若BD,请直接写出DE的长.
    特点
    如图,在四边形ABCD中,∠1+∠2=180°,BA=BC,连接BD,延长DA至E,使得AE=DC,则有以下结论成立:
    ①△BAE≌△BCD
    【证明】
    ①证明:∵∠1+∠2=180°,
    ∴∠BAD+∠C=180°,
    ∴∠BAE=∠BCD
    在△BAE和△BCD中
    AE=CD
    ∠BAE=∠BCD
    AB=BC
    ∴△BAE≌△BCD(SAS).
    结论
    △BAE≌△BCD
    解决方案
    【结论一】(对角互补——含90°角)
    如图,在四边形ABCD中,∠1=90°,∠2=90°,BA=BC,连接BD,延长DA至E,使得AE=DC,则有以下结论成立:
    ①△BAE≌△BCD;②△BED为等腰Rt△
    【证明】
    ①证明:证明:∵∠1+∠2=180°,
    ∴∠BAD+∠C=180°,
    ∴∠BAE=∠BCD
    在△BAE和△BCD中
    AE=CD
    ∠BAE=∠BCD
    AB=BC
    ∴△BAE≌△BCD(SAS).
    ②证明:
    ∵△BAE≌△BCD
    ∴∠EBA=∠DBC,BE=BD
    ∵∠DBC+∠ABD=90°
    ∴∠EBA+∠ABD=∠EBD=90°
    ∴△EBD为等腰Rt△
    【结论二】(对角互补——含60°角)
    如图,在四边形ABCD中,∠1=60°,∠2=120°,BA=BC,连接BD,延长DA至E,使得AE=DC,则有以下结论成立:
    ①△BAE≌△BCD;②△BED为等边△
    【证明】
    ①证明:证明:∵∠1+∠2=180°,
    ∴∠BAD+∠C=180°,
    ∴∠BAE=∠BCD
    在△BAE和△BCD中
    AE=CD
    ∠BAE=∠BCD
    AB=BC
    ∴△BAE≌△BCD(SAS).
    ②证明:
    ∵△BAE≌△BCD
    ∴∠EBA=∠DBC,BE=BD
    ∵∠DBC+∠ABD=60°
    ∴∠EBA+∠ABD=∠EBD=60°
    ∴△EBD为等边△

    相关试卷

    最新中考数学难点突破与经典模型精讲练 专题05 全等三角形与矩形翻折模型 (全国通用):

    这是一份最新中考数学难点突破与经典模型精讲练 专题05 全等三角形与矩形翻折模型 (全国通用),文件包含专题05全等三角形与矩形翻折模型原卷版docx、专题05全等三角形与矩形翻折模型解析版docx等2份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。

    最新中考数学难点突破与经典模型精讲练 专题03 全等三角形中的一线三垂直模型 (全国通用):

    这是一份最新中考数学难点突破与经典模型精讲练 专题03 全等三角形中的一线三垂直模型 (全国通用),文件包含专题03全等三角形中的一线三垂直模型原卷版docx、专题03全等三角形中的一线三垂直模型解析版docx等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。

    最新中考数学难点突破与经典模型精讲练 专题02 全等三角形中的半角模型 (全国通用):

    这是一份最新中考数学难点突破与经典模型精讲练 专题02 全等三角形中的半角模型 (全国通用),文件包含专题02全等三角形中的半角模型原卷版docx、专题02全等三角形中的半角模型解析版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map