|试卷下载
搜索
    上传资料 赚现金
    人教版八年级数学下册基础知识专项讲练 专题17.20 勾股定理(中考真题专练)(巩固篇)(专项练习)
    立即下载
    加入资料篮
    人教版八年级数学下册基础知识专项讲练 专题17.20 勾股定理(中考真题专练)(巩固篇)(专项练习)01
    人教版八年级数学下册基础知识专项讲练 专题17.20 勾股定理(中考真题专练)(巩固篇)(专项练习)02
    人教版八年级数学下册基础知识专项讲练 专题17.20 勾股定理(中考真题专练)(巩固篇)(专项练习)03
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学人教版八年级下册17.1 勾股定理课时作业

    展开
    这是一份初中数学人教版八年级下册17.1 勾股定理课时作业,共32页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    一、单选题
    1.(2022·广西桂林·统考中考真题)如图,在ABC中,∠B=22.5°,∠C=45°,若AC=2,则ABC的面积是( )
    A.B.1+C.2D.2+
    2.(2021·西藏·统考中考真题)如图,在Rt△ABC中,∠A=30°,∠C=90°,AB=6,点P是线段AC上一动点,点M在线段AB上,当AM=AB时,PB+PM的最小值为( )
    A.3B.2C.2+2D.3+3
    3.(2022·广西·中考真题)活动探究:我们知道,已知两边和其中一边的对角对应相等的两个三角形不一定全等,如已知△ABC中,∠A=30°, AC=3,∠A所对的边为,满足已知条件的三角形有两个(我们发现其中如图的△ABC是一个直角三角形),则满足已知条件的三角形的第三边长为( )
    A.B.C.或D.或
    4.(2022·黑龙江·统考中考真题)如图,中,,AD平分与BC相交于点D,点E是AB的中点,点F是DC的中点,连接EF交AD于点P.若的面积是24,,则PE的长是( )
    A.2.5B.2C.3.5D.3
    5.(2021·内蒙古鄂尔多斯·统考中考真题)如图,在中,,将边沿折叠,使点B落在上的点处,再将边沿折叠,使点A落在的延长线上的点处,两条折痕与斜边分别交于点N、M,则线段的长为( )
    A.B.C.D.
    6.(2021·湖北黄石·统考中考真题)如图,在中,,按以下步骤作图:①以为圆心,任意长为半径作弧,分别交、于、两点;②分别以、为圆心,以大于的长为半径作弧,两弧相交于点;③作射线,交边于点.若,,则线段的长为( )
    A.3B.C.D.
    7.(2021·陕西·统考中考真题)如图,、、、是四根长度均为5cm的火柴棒,点A、C、E共线.若,,则线段的长度为( )
    A.6 cmB.7 cmC.D.8cm
    8.(2021·山东枣庄·统考中考真题)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点,沿过点E的直线折叠,使点B与点A重合,折痕现交于点F,已知EF=,则BC的长是( )
    A.B.3C.3D.3
    9.(2022·四川攀枝花·统考中考真题)如图1是第七届国际数学教育大会()的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能够组合得到如图2所示的四边形.若,,,则的值为( )
    A.B.C.D.1
    10.(2022·广西玉林·统考中考真题)如图的电子装置中,红黑两枚跳棋开始放置在边长为2的正六边形的顶点A处.两枚跳棋跳动规则是:红跳棋按顺时针方向1秒钟跳1个顶点,黑跳棋按逆时针方向3秒钟跳1个顶点,两枚跳棋同时跳动,经过2022秒钟后,两枚跳棋之间的距离是( )
    A.4B.C.2D.0
    二、填空题
    11.(2022·湖北武汉·统考中考真题)如图,沿方向架桥修路,为加快施工进度,在直线上湖的另一边的处同时施工.取,,,则,两点的距离是_________.
    12.(2022·湖北荆州·统考中考真题)如图,在Rt△ABC中,∠ACB=90°,通过尺规作图得到的直线MN分别交AB,AC于D,E,连接CD.若,则CD=______.
    13.(2022·辽宁锦州·中考真题)如图,在中,,点D为的中点,将绕点D逆时针旋转得到,当点A的对应点落在边上时,点在的延长线上,连接,若,则的面积是____________.
    14.(2022·内蒙古鄂尔多斯·统考中考真题)如图,AB⊥BC于点B,AB⊥AD于点A,点E是CD中点,若BC=5,AD=10,BE=,则AB的长是 _____.
    15.(2022·浙江金华·统考中考真题)如图,在中,.把沿方向平移,得到,连结,则四边形的周长为_____.
    16.(2022·黑龙江牡丹江·统考中考真题)在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD=_______.
    17.(2021·山东德州·中考真题)在平面直角坐标系中,以点为圆心,任意长为半径画弧,交轴正半轴于点,交轴于点,再分别以点,为圆心,以大于长为半径画弧,两弧在轴右侧相交于点,连接,若,则点的坐标为__.
    18.(2021·四川内江·统考中考真题)已知,在中,,,,则的面积为 __.
    19.(2021·辽宁朝阳·统考中考真题)如图,在平面直角坐标系中,点A的坐标为(5,0),点M的坐标为(0,4),过点M作MNx轴,点P在射线MN上,若MAP为等腰三角形,则点P的坐标为___________.
    20.(2021·辽宁锦州·统考中考真题)如图,在△ABC中,AC=4,∠A=60°,∠B=45°,BC边的垂直平分线DE交AB于点D,连接CD,则AB的长为_________________.
    三、解答题
    21.(2022·四川资阳·中考真题)如图,在中,过点C作,在上截取,上截取,连接.
    (1) 求证:;
    (2) 若,求的面积.
    22.(2022·江苏无锡·统考中考真题)如图,△ABC为锐角三角形.
    (1) 请在图1中用无刻度的直尺和圆规作图:在AC右上方确定点D,使∠DAC=∠ACB,且;(不写作法,保留作图痕迹)
    (2) 在(1)的条件下,若,,,则四边形ABCD的面积为 .(如需画草图,请使用试卷中的图2)
    23.(2021·湖南长沙·统考中考真题)如图,在中,,垂足为,,延长至,使得,连接.
    (1)求证:;
    (2)若,,求的周长和面积.
    24.(2021·浙江台州·统考中考真题)如图,在四边形ABCD中,AB=AD=20,BC=DC=10
    (1)求证:△ABC≌△ADC;
    (2)当∠BCA=45°时,求∠BAD的度数.
    25.(2021·广西柳州·统考中考真题)在一次海上救援中,两艘专业救助船同时收到某事故渔船的求救讯息,已知此时救助船在的正北方向,事故渔船在救助船的北偏西30°方向上,在救助船的西南方向上,且事故渔船与救助船相距120海里.
    (1)求收到求救讯息时事故渔船与救助船之间的距离;
    (2)若救助船A,分别以40海里/小时、30海里/小时的速度同时出发,匀速直线前往事故渔船处搜救,试通过计算判断哪艘船先到达.
    26.(2022·青海西宁·统考中考真题)八年级课外兴趣小组活动时,老师提出了如下问题:
    将因式分解.
    【观察】经过小组合作交流,小明得到了如下的解决方法:
    解法一:原式
    解法二:原式
    【感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.(温馨提示:因式分解一定要分解到不能再分解为止)
    【类比】
    请用分组分解法将因式分解;
    【挑战】
    请用分组分解法将因式分解;
    【应用】
    “赵爽弦图”是我国古代数学的骄傲,我们利用它验证了勾股定理.如图,“赵爽弦图”是由四个全等的直角三角形围成的一个大正方形,中间是一个小正方形.若直角三角形的两条直角边长分别是a和,斜边长是3,小正方形的面积是1.根据以上信息,先将因式分解,再求值.
    参考答案
    1.D
    【分析】如图,过点A作AD⊥AC于A,交BC于D,过点A作AE⊥BC于E,先证明△ADC是等腰直角三角形,得AD=AC=2,∠ADC=45°,CD=AC=2,再证明AD=BD,计算AE和BC的长,根据三角形的面积公式可解答.
    解:如图,过点A作AD⊥AC于A,交BC于D,过点A作AE⊥BC于E,
    ∵∠C=45°,
    ∴△ADC是等腰直角三角形,
    ∴AD=AC=2,∠ADC=45°,CD=AC=2,
    ∵∠ADC=∠B+∠BAD,∠B=22.5°,
    ∴∠DAB=22.5°,
    ∴∠B=∠DAB,
    ∴AD=BD=2,
    ∵AD=AC,AE⊥CD,
    ∴DE=CE,

    ∴△ABC的面积.
    故选:D.
    【点拨】本题考查的是勾股定理,等腰直角三角形的性质,三角形的面积,熟知掌握等腰三角形的性质是解本题的关键.
    2.B
    【分析】作B点关于AC的对称点B',连接B'M交AC于点P,则PB+PM的最小值为B'M的长,过点B'作B'H⊥AB交H点,在Rt△BB'H中,B'H=3,HB=3,可求MH=1,在Rt△MHB'中,B'M=2,所以PB+PM的最小值为2.
    解:作B点关于AC的对称点B',连接B'M交AC于点P,
    ∴BP=B'P,BC=B'C,
    ∴PB+PM=B'P+PM≥B'M,
    ∴PB+PM的最小值为B'M的长,
    过点B'作B'H⊥AB交H点,
    ∵∠A=30°,∠C=90°,
    ∴∠CBA=60°,
    ∵AB=6,
    ∴BC=3,
    ∴BB'=BC+B'C=6,
    在Rt△BB'H中,∠B'BH=60°,
    ∴∠BB'H=30°,
    ∴BH=3,
    由勾股定理可得:,
    ∴AH=AB-BH=3,
    ∵AM=AB,
    ∴AM=2,
    ∴MH=AH-AM=1,
    在Rt△MHB'中,,
    ∴PB+PM的最小值为2,
    故选:B.
    【点拨】本题考查轴对称—最短路线问题,涉及到解直角三角形,解题的关键是做辅助线,找出PB+PM的最小值为B'M的长.
    3.C
    【分析】分情况讨论,当△ABC是一个直角三角形时,当△AB1C是一个钝角三角形时,根据含30°的直角三角形的性质及勾股定理求解即可.
    解:如图,当△ABC是一个直角三角形时,即,


    如图,当△AB1C是一个钝角三角形时,
    过点C作CD⊥AB1,









    综上,满足已知条件的三角形的第三边长为或,
    故选:C.
    【点拨】本题考查了根据已知条件作三角形,涉及含30°的直角三角形的性质及勾股定理,熟练掌握知识点是解题的关键.
    4.A
    【分析】连接DE,取AD的中点G,连接EG,先由等腰三角形“三线合一“性质,证得AD⊥BC,BD=CD,再由E是AB的中点,G是AD的中点,求出S△EGD=3,然后证△EGP≌△FDP(AAS),得GP=CP=1.5,从而得DG=3,即可由三角形面积公式求出EG长,由勾股定理即可求出PE长.
    解:如图,连接DE,取AD的中点G,连接EG,
    ∵AB=AC,AD平分与BC相交于点D,
    ∴AD⊥BC,BD=CD,
    ∴S△ABD==12,
    ∵E是AB的中点,
    ∴S△AED==6,
    ∵G是AD的中点,
    ∴S△EGD==3,
    ∵E是AB的中点,G是AD的中点,
    ∴EGBC,EG=BD=CD,
    ∴∠EGP=∠FDP=90°,
    ∵F是CD的中点,
    ∴DF=CD,
    ∴EG=DF,
    ∵∠EPG=∠FPD,
    ∴△EGP≌△FDP(AAS),
    ∴GP=PD=1.5,
    ∴GD=3,
    ∵S△EGD==3,即,
    ∴EG=2,
    在Rt△EGP中,由勾股定理,得
    PE==2.5,
    故选:A.
    【点拨】本题考查等腰三角形的性质,三角形面积,全等三角形判定与性质,勾股定理,熟练掌握三角形中线分三角形两部分的面积相等是解题的关键.
    5.B
    【分析】利用勾股定理求出AB=10,利用等积法求出CN=,从而得AN=,再证明∠NMC=∠NCM=45°,进而即可得到答案.
    解:∵
    ∴AB=,
    ∵S△ABC=×AB×CN=×AC×BC
    ∴CN=,
    ∵AN=,
    ∵折叠
    ∴AM=A'M,∠BCN=∠B'CN,∠ACM=∠A'CM,
    ∵∠BCN+∠B'CN+∠ACM+∠A'CM=90°,
    ∴∠B'CN +∠A'CM=45°,
    ∴∠MCN=45°,且CN⊥AB,
    ∴∠NMC=∠NCM=45°,
    ∴MN=CN=,
    ∴A'M=AM=AN−MN=-=.
    故选B.
    【点拨】本题考查了翻折变换,勾股定理,等腰直角三角形的性质,熟练运用折叠的性质是本题的关键.
    6.A
    【分析】由尺规作图痕迹可知,BD是∠ABC的角平分线,过D点作DH⊥AB于H点,根据全等证明出BC=BH,设DC=DH=x则AD=AC-DC=8-x,BC=BH=6,AH=AB-BH=4,在Rt△ADH中,由勾股定理得到 ,由此即可求出x的值.
    解:由尺规作图痕迹可知,BD是∠ABC的角平分线,
    过D点作DH⊥AB于H点,
    ∵∠C=∠DHB=90°,
    ∴DC=DH,

    ∵∠C=∠DHB=90°,∠HBD=∠CBD,BD=BD
    ∴△BHD≌△BCD(AAS)
    ∴ BC=BH
    设DC=DH=x,则AD=AC-DC=8-x,BC=BH=6,AH=AB-BH=4,
    在Rt△ADH中,由勾股定理:,
    代入数据:,解得,故,
    故选:A.
    【点拨】本题考查了角平分线的尺规作图,在角的内部角平分线上的点到角两边的距离相等,勾股定理等相关知识点,熟练掌握角平分线的尺规作图是解决本题的关键.
    7.D
    【分析】分别过B、D作AE的垂线,垂足分别为F、G,证明,即可证明,进一步计算即可得出答案.
    解:分别过B、D作AE的垂线,垂足分别为F、G,
    ∵,,
    ∴,
    ∴,
    在和中;

    ∴,
    ∴BF=CG,
    ∵,
    ∴均为等腰三角形,
    ∵,
    ∴,
    ∴,
    ∴,
    故选:D.
    【点拨】本题主要考查等腰三角形判定与性质,全等三角形判定与性质以及勾股定理等知识点,正确画出辅助线是解决本题的关键.
    8.B
    【分析】折叠的性质主要有:1.重叠部分全等;2.折痕是对称轴,对称点的连线被对称轴垂直平分. 由折叠的性质可知,所以可求出∠AFB=90°,再直角三角形的性质可知,所以,的长可求,再利用勾股定理即可求出BC的长.
    解:


    AB=AC,
    ,
    故选B.
    【点拨】本题考查了折叠的性质、等腰直角三角形的判断和性质以及勾股定理的运用,求出∠AFB=90°是解题的关键.
    9.A
    【分析】根据勾股定理和含30°角的直角三角形的性质即可得到结论.
    解:,,,
    ,,


    故选:A.
    【点拨】本题主要考查了勾股定理,含30°角的直角三角形的性质等知识,熟练掌握直角三角形的性质是解题的关键.
    10.B
    【分析】由题意可分别求出经过2022秒后,红黑两枚跳棋的位置,然后根据正多边形的性质及含30度直角三角形的性质可进行求解.
    解:∵2022÷3=674,2022÷1=2022,
    ∴,
    ∴经过2022秒后,红跳棋落在点A处,黑跳棋落在点E处,
    连接AE,过点F作FG⊥AE于点G,如图所示:
    在正六边形中,,
    ∴,
    ∴,
    ∴,
    ∴,
    故选B.
    【点拨】本题主要考查图形规律问题、勾股定理、含30度直角三角形的性质及正多边形的性质,熟练掌握图形规律问题、勾股定理、含30度直角三角形的性质及正多边形的性质是解题的关键.
    11.
    【分析】如图所示:过点作于点,先求出,再根据勾股定理即可求出的长.
    解:如图所示:过点作于点,则∠BEC=∠DEC=90°,


    ∴∠BCE=90°-30°=60°,
    又,

    ∴∠ECD=45°=∠D,
    ∴,


    ,即.
    故答案为:.
    【点拨】本题考查三角形内角和定理、等腰三角形的判定与性质、直角三角形的性质及勾股定理,解题的关键是熟练掌握相关内容并能灵活运用.
    12.
    【分析】先求解AE,AC,再连结BE,证明 利用勾股定理求解BC,AB,从而可得答案.
    解: ,

    如图,连结
    由作图可得:是的垂直平分线,




    故答案为:
    【点拨】本题考查的是线段的垂直平分线的作图与性质,勾股定理的应用,二次根式的化简,熟悉几何基本作图与基本图形的性质是解本题的关键.
    13.
    【分析】先证明 是等边三角形,再证明,再利用直角三角形角对应的边是斜边的一般分别求出和,再利用勾股定理求出,从而求得的面积.
    解:如下图所示,设与交于点O,连接和,
    ∵点D为的中点,,
    ∴,,是的角平分线,是,
    ∴,

    ∵,
    ∴ 是等边三角形,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴,


    ∵,

    ∴,,
    ∴ .
    【点拨】本题考查等腰三角形、等边三角形和直角三角形的性质,证明 是等边三角形是解本题的关键.
    14.12
    【分析】延长BE交AD于点F,由“ASA”可证△BCE≌△FDE,可得DF=BC=5,BE=EF,由勾股定理可求AB的长.
    解:如图,延长BE交AD于点F,
    ∵点E是DC的中点,
    ∴DE=CE,
    ∵AB⊥BC,AB⊥AD,
    ∴AD∥BC,
    ∴∠ D=∠BCE,∠FED=∠BEC,
    ∴ △BCE≌△FDE(ASA),
    ∴DF=BC=5,BE=EF,
    ∴BF=2BE=13,AF=5,
    在Rt△ABF中,由勾股定理可得AB=12.
    故答案为:12.
    【点拨】本题考查了全等三角形的判定和性质,勾股定理,添加恰当辅助线构造全等三角形是本题的关键.
    15.
    【分析】通过勾股定理,平移的特性,特殊角的三角函数,分别计算出四边形的四条边长,再计算出周长即可.
    解:∵,
    ∴AB=2BC=4,
    ∴AC=,
    ∵把沿方向平移,得到,
    ∴,, ,
    ∴四边形的周长为:,
    故答案为:.
    【点拨】本题考查勾股定理,平移的特性,特殊角的三角函数,能够熟练掌握勾股定理是解决本题的关键.
    16.3.
    解:试题分析:如图,过点D作DE⊥AB于E,
    ∵∠C=90°,AC=6,BC=8,
    ∴AB=,
    ∵AD平分∠CAB,
    ∴CD=DE,
    ∴S△ABC=AC•CD+AB•DE=AC•BC,
    即×6•CD+×10•CD=×6×8,
    解得CD=3.
    考点:1.角平分线的性质,2.勾股定理
    17.或
    【分析】画出图形,结合图象可知点P有两个,再利用勾股定理求解即可.
    解:如图,
    由作图知点在第一象限或第四象限角平分线上,
    ∴设点的坐标为,
    ∵,
    ∴,
    ∴,
    ∴或,
    故答案为或.
    【点拨】本题考查角平分线的画法,勾股定理.解题的关键是掌握角平分线的画法,结合图象分析出点在第一象限或第四象限角平分线上.
    18.2或14#14或2
    【分析】过点B作AC边的高BD,Rt△ABD中,∠A=45°,AB=4,得BD=AD=4,在Rt△BDC中,BC=4,得CD==5,①△ABC是钝角三角形时,②△ABC是锐角三角形时,分别求出AC的长,即可求解.
    解:过点作边的高,
    中,,,

    在中,,

    ①是钝角三角形时,


    ②是锐角三角形时,


    故答案为:2或14.
    【点拨】本题考查了勾股定理,三角形面积求法,解题关键是分类讨论思想.
    19.(,4)或(,4)或(10,4)
    【分析】分三种情况:①PM=PA,②MP=MA,③AM=AP,分别画图,根据等腰三角形的性质和两点的距离公式,即可求解.
    解:设点P的坐标为(x,4),
    分三种情况:①PM=PA,
    ∵点A的坐标为(5,0),点M的坐标为(0,4),
    ∴PM=x,PA= ,
    ∵PM=PA,
    ∴x=,解得:x=,
    ∴点P的坐标为(,4);
    ②MP=MA,
    ∵点A的坐标为(5,0),点M的坐标为(0,4),
    ∴MP=x,MA==,
    ∵MP=MA,
    ∴x=,
    ∴点P的坐标为(,4);
    ③AM=AP,
    ∵点A的坐标为(5,0),点M的坐标为(0,4),
    ∴AP=,MA==,
    ∵AM=AP,
    ∴=,解得:x1=10,x2=0(舍去),
    ∴点P的坐标为(10,4);
    综上,点P的坐标为(,4)或(,4)或(10,4).
    故答案为:(,4)或(,4)或(10,4).
    【点拨】本题考查了等腰三角形的性质和坐标与图形的性质,熟练掌握坐标与图形特征,利用坐标特征和勾股定理求线段的长是解题的关键.
    20.2+2
    【分析】根据线段垂直平分线的性质得到DB=DC,根据三角形的外角性质得到∠ADC=90°,根据含30°角的直角三角形的性质求出AD,根据勾股定理求出DC,进而求出AB.
    解:∵DE是BC的垂直平分线,
    ∴DB=DC,
    ∴∠DCB=∠B=45°,
    ∴∠ADC=∠DCB+∠B=90°,
    ∵∠A=60°,
    ∴∠ACD=30°,
    ∴AD=AC=2,
    由勾股定理得:DC===2,
    ∴DB=DC=2,
    ∴AB=AD+DB=2+2,
    故答案为:2+2.
    【点拨】本题主要考查了三角形外角性质,线段垂直平分线的性质,直角三角形的性质,勾股定理,熟练掌握相关知识点是解题的关键.
    21.(1) 证明见分析(2)
    【分析】(1)根据,可以得到,即可用SAS证明得出结论;
    (2)根据全等三角形的性质,可以得到,设,则,因为在中,,而在中,,即可列出方程求出三角形的面积.
    解:(1)证明:∵

    又∵
    ∴;
    (2)由(1),
    ∴,
    设,∵,则,
    在中,,
    在中,,
    ∴,
    即,整理得:,
    解得:(舍去),
    ∴,
    ∴,,
    ∴.
    【点拨】本题考查了全等三角形的判定和性质,勾股定理的应用,解一元二次方程,用方程思想解决几何问题是本题的关键.
    22.(1) 见分析(2)
    【分析】(1)先作∠DAC=∠ACB,再利用垂直平分线的性质作,即可找出点D;
    (2)由题意可知四边形ABCD是梯形,利用直角三角形的性质求出AE、BE、CE、AD的长,求出梯形的面积即可.
    (1)解:如图,
    ∴点D为所求点.
    (2)解:过点A作AE垂直于BC,垂足为E,
    ∵,,
    ∴,
    ∵,
    ∴,,
    ∴,
    ∵∠DAC=∠ACB,
    ∴,四边形ABCD是梯形,
    ∴,
    ∴四边形AECD是矩形,
    ∴,
    ∴四边形ABCD的面积为,
    故答案为:.
    【点拨】本题考查作图,作相等的角,根据垂直平分线的性质做垂线,根据直角三角形的性质及勾股定理求线段的长,正确作出图形是解答本题的关键.
    23.(1)证明见分析;(2)周长为,面积为22.
    【分析】(1)先根据垂直的定义可得,再根据三角形全等的判定定理与性质即可得证;
    (2)先根据全等三角形的性质可得,从而可得,再利用勾股定理可得,从而可得,然后利用勾股定理可得,最后利用三角形的周长公式和面积公式即可得.
    解:(1)证明:,

    在和中,,


    (2),,









    则的周长为,
    的面积为.
    【点拨】本题考查了三角形全等的判定定理与性质、勾股定理等知识点,熟练掌握三角形全等的判定定理与性质是解题关键.
    24.(1)见详解;(2)60°
    【分析】(1)通过SSS证明△ABC≌△ADC,即可;
    (2)先证明AC垂直平分BD,从而得是等腰直角三角形,求出BO= 10,从而得BD=20,是等边三角形,进而即可求解.
    解:(1)证明:在△ABC和△ADC中,

    ∴△ABC≌△ADC(SSS),
    (2)连接BD,交AC于点O,
    ∵△ABC≌△ADC,
    ∴AB=AD,BC=DC,
    ∴AC垂直平分BD,即:∠AOB=∠BOC=90°,
    又∵∠BCA=45°,
    ∴是等腰直角三角形,
    ∴BO=BC÷=10÷=10,
    ∴BD=2BO=20,
    ∵AB=AD=20,
    ∴是等边三角形,
    ∴∠BAD=60°.
    【点拨】本题主要考查全等三角形的判定和性质,等腰直角三角形的判定和性质,等边三角形的判定和性质,掌握垂直平分线的判定定理,是解题的关键.
    25.(1)收到求救讯息时事故渔船与救助船之间的距离为海里;(2)救助船先到达.
    【分析】(1)如图,作于,在△PAC中先求出PC的长,继而在△PBC中求出BP的长即可;
    (2)根据“时间=路程÷速度”分别求出救助船A和救助船B所需的时间,进行比较即可.
    解:(1)如图,作于,
    则,
    由题意得:海里,,,
    ∴海里,是等腰直角三角形,
    ∴海里,海里,
    答:收到求救讯息时事故渔船与救助船之间的距离为海里;
    (2)∵海里,海里,救助船分别以40海里/小时、30海里/小时的速度同时出发,
    ∴救助船所用的时间为(小时),
    救助船所用的时间为(小时),
    ∵,
    ∴救助船先到达.
    【点拨】本题考查了解直角三角形的应用,涉及了含30度角的直角三角形的性质,等腰直角三角形的判定,勾股定理的应用等,熟练正确添加辅助线构建直角三角形是解题的关键.
    26.(1) (2) (3) ,9
    【分析】(1)直接将前两项和后两项组合,利用平方差公式再提取公因式,进而分解因式即可;
    (2)先分组,利用完全平方公式再提取公因式,进而分解因式即可;
    (3)分组,先提取公因式,利用完全平方公式分解因式,再由勾股定理以及面积得到,,整体代入得出答案即可.
    (1)解:

    (2)解:

    (3)解:

    ∴根据题意得,,
    ∴原式.
    【点拨】此题主要考查了分组分解法以及、提取公因式法、公式法分解因式以及勾股定理的应用,正确分组再运用公式法分解因式是解题关键.
    相关试卷 更多
    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        人教版八年级数学下册基础知识专项讲练 专题17.20 勾股定理(中考真题专练)(巩固篇)(专项练习)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map