|试卷下载
搜索
    上传资料 赚现金
    人教版八年级数学下册基础知识专项讲练 专题17.19 勾股定理(中考真题专练)(基础篇)(专项练习)
    立即下载
    加入资料篮
    人教版八年级数学下册基础知识专项讲练 专题17.19 勾股定理(中考真题专练)(基础篇)(专项练习)01
    人教版八年级数学下册基础知识专项讲练 专题17.19 勾股定理(中考真题专练)(基础篇)(专项练习)02
    人教版八年级数学下册基础知识专项讲练 专题17.19 勾股定理(中考真题专练)(基础篇)(专项练习)03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学人教版八年级下册17.1 勾股定理当堂检测题

    展开
    这是一份初中数学人教版八年级下册17.1 勾股定理当堂检测题,共27页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    一、单选题
    1.(2022·天津·统考中考真题)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x轴,若AB=6,OA=OB=5,则点A的坐标是( )
    A.B.C.D.
    2.(2021·山东滨州·统考中考真题)在中,若,,,则点C到直线AB的距离为( )
    A.3B.4C.5D.2.4
    3.(2022·湖北荆门·统考中考真题)数学兴趣小组为测量学校A与河对岸的科技馆B之间的距离,在A的同岸选取点C,测得AC=30,∠A=45°,∠C=90°,如图,据此可求得A,B之间的距离为( )
    A.20B.60C.30D.30
    4.(2022·河北·统考中考真题)题目:“如图,∠B=45°,BC=2,在射线BM上取一点A,设AC=d,若对于d的一个数值,只能作出唯一一个△ABC,求d的取值范围.”对于其答案,甲答:,乙答:d=1.6,丙答:,则正确的是( )
    A.只有甲答的对B.甲、丙答案合在一起才完整
    C.甲、乙答案合在一起才完整D.三人答案合在一起才完整
    5.(2022·湖南长沙·统考中考真题)如图,在中,按以下步骤作图:
    ①分别过点A、B为圆心,大于的长为半径画弧,两弧交于P、Q两点;
    ②作直线PQ交AB于点D;
    ③以点D为圆心,AD长为半径画弧交PQ于点M、连接AM、BM.
    若,则AM的长为( )
    A.4B.2C.D.
    6.(2022·贵州遵义·统考中考真题)如图1是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形.若,,则点到的距离为( )
    A.B.C.1D.2
    7.(2022·贵州贵阳·统考中考真题)如图,“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的大正方形,若图中的直角三角形的两条直角边的长分别为1和3,则中间小正方形的周长是( )
    A.4B.8C.12D.16
    8.(2022·山东济宁·统考中考真题)如图,三角形纸片ABC中,∠BAC=90°,AB=2,AC=3.沿过点A的直线将纸片折叠,使点B落在边BC上的点D处;再折叠纸片,使点C与点D重合,若折痕与AC的交点为E,则AE的长是( )
    A.B.C.D.
    9.(2021·湖北襄阳·统考中考真题)我国古代数学著作《九章算术》中记载了一个问题:“今有池方一丈,葭( jiā)生其中,出水一尺,引葭赴岸,适与岸齐.问水深几何.”(丈、尺是长度单位,1丈尺,)其大意为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度是多少?则水深为( )
    A.10尺B.11尺C.12尺D.13尺
    10.(2021·浙江杭州·统考中考真题)已知线段,按如下步骤作图:①作射线,使;②作的平分线;③以点为圆心,长为半径作弧,交于点;④过点作于点,则( )
    A.B.C.D.
    11.(2021·四川凉山·统考中考真题)如图,中,,将沿DE翻折,使点A与点B重合,则CE的长为( )
    A.B.2C.D.
    12.(2022·内蒙古·中考真题)如图,在中,,以B为圆心,适当长为半径画弧交于点M,交于点N,分别以M,N为圆心,大于MN的长为半径画弧,两弧相交于点D,射线交于点E,点F为的中点,连接,若,则的周长是( )
    A.8B.C.D.
    二、填空题
    13.(2021·广西玉林·统考中考真题)如图,某港口位于东西方向的海岸线上,甲、乙轮船同时离开港口,各自沿一固定方向航行,甲、乙轮船每小时分别航行12海里和16海里,1小时后两船分别位于点,处,且相距20海里,如果知道甲船沿北偏西方向航行,则乙船沿_____方向航行.
    14.(2022·西藏·统考中考真题)如图,依下列步骤尺规作图,并保留作图痕迹:
    (1)分别以点A,B为圆心,大于AB的长为半径作弧,两弧相交于E,F两点,作直线EF;
    (2)以点A为圆心,适当长为半径画弧,分别交AB,AC于点G,H,再分别以点G,H为圆心,大于GH的长为半径画弧,两弧在∠BAC的内部相交于点O,画射线AO,交直线EF于点M.已知线段AB=6,∠BAC=60°,则点M到射线AC的距离为 _____.
    15.(2022·辽宁朝阳·统考中考真题)如图,在RtABC中,∠ACB=90°,AB=13,BC=12,分别以点B和点C为圆心、大于BC的长为半径作弧,两弧相交于E,F两点,作直线EF交AB于点D,连接CD,则ACD的周长是_____.
    16.(2022·辽宁丹东·统考中考真题)如图,在Rt△ABC中,∠B=90°,AB=4,BC=8,分别以A,C为圆心,以大于AC的长为半径作弧,两弧相交于点P和点Q,直线PQ与AC交于点D,则AD的长为______.
    17.(2022·湖北黄冈·统考中考真题)勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1,柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m(m≥3,m为正整数),则其弦是________(结果用含m的式子表示).
    18.(2022·四川成都·统考中考真题)如图,在中,按以下步骤作图:①分别以点和为圆心,以大于的长为半径作弧,两弧相交于点和;②作直线交边于点.若,,,则的长为_________.
    19.(2021·江苏宿迁·统考中考真题)《九章算术》中一道“引葭赴岸”问题:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一个池塘,其地面是边长为10尺的正方形,一棵芦苇AC生长在它的中央,高出水面部分BC为1尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部C恰好碰到岸边的处(如图),水深和芦苇长各多少尺?则该问题的水深是___________尺.
    20.(2022·四川遂宁·统考中考真题)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.
    21.(2021·江苏南通·统考中考真题)如图,一艘轮船位于灯塔P的南偏东方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东方向上的B处,此时B处与灯塔P的距离为___________海里(结果保留根号).
    22.(2021·浙江杭州·统考中考真题)如图,在直角坐标系中,以点为端点的四条射线,,,分别过点,点,点,点,则______(填“”“”“”中的一个).
    23.(2021·河南·统考中考真题)小华用一张直角三角形纸片玩折纸游戏,如图1,在中,,,.第一步,在边上找一点,将纸片沿折叠,点落在处,如图2,第二步,将纸片沿折叠,点落在处,如图3.当点恰好在原直角三角形纸片的边上时,线段的长为__________.
    24.(2021·黑龙江齐齐哈尔·统考中考真题)若直角三角形其中两条边的长分别为3,4,则该直角三角形斜边上的高的长为________.
    25.(2021·湖南常德·统考中考真题)如图.在中,,平分,于E,若,则的长为________.
    三、解答题
    26.(2022·贵州安顺·统考中考真题)如图,在中,,,是边上的一点,以为直角边作等腰,其中,连接.
    (1) 求证:;
    (2) 若时,求的长.
    27.(2021·四川自贡·统考中考真题)如图,的顶点均在正方形网格格点上.只用不带刻度的直尺,作出的角平分线BD(不写作法,保留作图痕迹).
    28.(2021·黑龙江哈尔滨·统考中考真题)如图,方格纸中每个小正方形的边长均为个单位长度,的顶点和线段的端点均在小正方形的顶点上.
    (1)在方格纸中将向上平移个单位长度,再向右平移个单位长度后得到;(点的对应点是点,点的对应点是点,点的对应点是点),请画出;
    (2)在方格纸中画出以为斜边的等腰直角三角形(点在小正方形的顶点上).连接,请直接写出线段的长.
    参考答案
    1.D
    【分析】利用HL证明△ACO≌△BCO,利用勾股定理得到OC=4,即可求解.
    解:∵AB⊥x轴,
    ∴∠ACO=∠BCO=90°,
    ∵OA=OB,OC=OC,
    ∴△ACO≌△BCO(HL),
    ∴AC=BC=AB=3,
    ∵OA=5,
    ∴OC=4,
    ∴点A的坐标是(4,3),
    故选:D.
    【点拨】本题考查了坐标与图形,全等三角形的判定和性质,勾股定理,解题的关键是灵活运用所学知识解决问题.
    2.D
    【分析】根据题意画出图形,然后作CD⊥AB于点D,根据勾股定理可以求得AB的长,然后根据面积法,可以求得CD的长.
    解:作CD⊥AB于点D,如右图所示,
    ∵∠ACB=90°,AC=3,BC=4,
    ∴AB==5,
    ∵,
    ∴,
    解得CD=2.4,
    故选:D.
    【点拨】本题考查勾股定理、三角形的面积,解答本题的关键是明确题意,画出相应的图形,利用勾股定理和面积法解答.
    3.C
    【分析】根据等腰直角三角形的性质,利用勾股定理计算即可求解.
    解:在Rt△ABC中,∠C=90°,∠A=45°,AC=30,
    ∴∠B=∠A=45°,
    ∴BC=AC=30,
    ∴AB=,
    故选:C
    【点拨】本题主要考查了等腰直角三角形,勾股定理,利用勾股定理求解线段长度是解此题的关键.
    4.B
    【分析】过点C作于,在上取,发现若有两个三角形,两三角形的AC边关于对称,分情况分析即可
    解:过点C作于,在上取
    ∵∠B=45°,BC=2,
    ∴是等腰直角三角形



    若对于d的一个数值,只能作出唯一一个△ABC
    通过观察得知:
    点A在点时,只能作出唯一一个△ABC(点A在对称轴上),此时,即丙的答案;
    点A在射线上时,只能作出唯一一个△ABC(关于对称的AC不存在),此时,即甲的答案,
    点A在线段(不包括点和点)上时,有两个△ABC(二者的AC边关于对称);
    故选:B
    【点拨】本题考查三角形的存在性质,勾股定理,解题关键是发现若有两个三角形,两三角形的AC边关于对称
    5.B
    【分析】根据作图可知垂直平分,,是等腰直角三角形,据此即可求解.
    解:由作图可得垂直平分,
    则是等腰直角三角形
    ∴由勾股定理得:
    故选:B.
    【点拨】本题考查了作垂线,等腰直角三角形的性质,勾股定理,掌握基本作图理解题意是解题的关键.
    6.B
    【分析】根据题意求得,进而求得,进而等面积法即可求解.
    解:在中,
    ,,


    设到的距离为,


    故选B.
    【点拨】本题考查了勾股定理,含30度角的直角三角形的性质,掌握以上知识是解题的关键.
    7.B
    【分析】根据图形分析可得小正方形的边长为两条直角边长的差,据此即可求解.
    解:图中的直角三角形的两条直角边的长分别为1和3,则中间小正方形的周长是.
    故选B.
    【点拨】本题考查了以弦图为背景的计算题,理解题意是解题的关键.
    8.A
    【分析】根据题意可得AD = AB = 2, ∠B = ∠ADB, CE= DE, ∠C=∠CDE,可得∠ADE = 90°,继而设AE=x,则CE=DE=3-x,根据勾股定理即可求解.
    解:∵沿过点A的直线将纸片折叠,使点B落在边BC上的点D处,
    ∴AD = AB = 2, ∠B = ∠ADB,
    ∵折叠纸片,使点C与点D重合,
    ∴CE= DE, ∠C=∠CDE,
    ∵∠BAC = 90°,
    ∴∠B+ ∠C= 90°,
    ∴∠ADB + ∠CDE = 90°,
    ∴∠ADE = 90°,
    ∴AD2 + DE2 = AE2,
    设AE=x,则CE=DE=3-x,
    ∴22+(3-x)2 =x2,
    解得
    即AE=
    故选A
    【点拨】本题考查了折叠的性质,勾股定理,掌握折叠的性质以及勾股定理是解题的关键.
    9.C
    【分析】根据勾股定理列出方程,解方程即可.
    解:设水池里的水深为x尺,由题意得:
    解得:x=12
    故选:C.
    【点拨】本题主要考查勾股定理的运用,掌握勾股定理并能根据勾股定理正确的列出对应的方程式解题的关键.
    10.D
    【分析】由题意易得∠BAD=45°,AB=AE,进而可得△APE是等腰直角三角形,然后根据等腰直角三角形的性质可求解.
    解:∵,
    ∴,
    ∵AD平分,
    ∴∠BAD=45°,
    ∵,
    ∴△APE是等腰直角三角形,
    ∴AP=PE,
    ∴,
    ∵AB=AE,
    ∴,
    ∴;
    故选D.
    【点拨】本题主要考查等腰直角三角形的性质与判定、勾股定理及角平分线的定义,熟练掌握等腰直角三角形的性质与判定、勾股定理及角平分线的定义是解题的关键.
    11.D
    【分析】先在RtABC中利用勾股定理计算出AB=10,再利用折叠的性质得到AE=BE,AD=BD=5,设AE=x,则CE=AC-AE=8-x,BE=x,在Rt△BCE中根据勾股定理可得到x2=62+(8-x)2,解得x,可得CE.
    解:∵∠ACB=90°,AC=8,BC=6,
    ∴AB==10,
    ∵△ADE沿DE翻折,使点A与点B重合,
    ∴AE=BE,AD=BD=AB=5,
    设AE=x,则CE=AC-AE=8-x,BE=x,
    在Rt△BCE中
    ∵BE2=BC2+CE2,
    ∴x2=62+(8-x)2,解得x=,
    ∴CE==,
    故选:D.
    【点拨】本题考查了折叠的性质:折叠前后两图象全等,即对应角相等,对应边相等.也考查了勾股定理.
    12.D
    【分析】由尺规作图可知,BE为∠ABC的平分线,结合等腰三角形的性质可得BE⊥AC,AE= CE=AC= 2,利用勾股定理求出AB、 BC的长度,进而可得EF= AB=2, CF=BC=,即可得出答案.
    解:由题意得,BE为∠ABC的平分线,
    ∵ AB= BC,
    BE⊥AC, AE= CE=AC = 2,
    由勾股定理得,
    AB= BC=,
    ∵点F为BC的中点,
    ∴EF=AB=, CF=BC=,
    ∴∆CEF的周长为:+2= 2+ 2.
    故选:D.
    【点拨】本题考查尺规作图、等腰三角形的性质、勾股定理,熟练掌握角平分线的作图步骤以及等腰三角形的性质是解答本题的关键.
    13.北偏东50°(或东偏北40°)
    【分析】由题意易得海里,PB=16海里,,则有,所以∠APB=90°,进而可得,然后问题可求解.
    解:由题意得:海里,PB=1×16=16海里,,海里,
    ∴,
    ∴∠APB=90°,
    ∴,
    ∴乙船沿北偏东50°(或东偏北40°)方向航行;
    故答案为北偏东50°(或东偏北40°).
    【点拨】本题主要考查勾股定理的逆定理及方位角,熟练掌握勾股定理的逆定理及方位角是解题的关键.
    14.
    【分析】根据线段的垂直平分线和角平分线的作法可知:EF是线段AB的垂直平分线,AO是∠AOB的平分线,利用线段的垂直平分线的性质和角平分线的性质的求解即可.
    解:如图所示:
    根据题意可知:EF是线段AB的垂直平分线,AO是∠BAC的平分线,
    ∵AB=6,∠BAC=60°,
    ∴∠BAO=∠CAO=∠BAC=30°,AD=AB=3,
    ∴AM=2MD,
    在Rt△ADM中,,
    即,
    ∴MD=,
    ∵AM是∠AOB的平分线,MD⊥AB,
    ∴点M到射线AC的距离为.
    故答案为:.
    【点拨】本题考查作图-基本作图,线段的垂直平分线的性质,角平分线的性质等知识,解题的关键是理解题意灵活运用基本作图的知识解决问题.
    15.18
    【分析】由题可知,EF为线段BC的垂直平分线,则CD=BD,由勾股定理可得AC5,则△ACD的周长为AC+AD+CD=AC+AD+BD=AC+AB,即可得出答案.
    解:由题可知,EF为线段BC的垂直平分线,
    ∴CD=BD,
    ∵∠ACB=90°,AB=13,BC=12,
    ∴AC5,
    ∴△ACD的周长为AC+AD+CD=AC+AD+BD=AC+AB=5+13=18.
    故答案为:18.
    【点拨】本题考查尺规作图、线段垂直平分线的性质、勾股定理,熟练掌握线段垂直平分线的性质及勾股定理是详解本题的关键.
    16.
    【分析】利用勾股定理求出AC,再利用线段的垂直平分线的性质求出AD.
    解:在Rt△ABC中,∠B=90°,AB=4,BC=8,
    ∴AC===4,
    由作图可知,PQ垂直平分线段AC,
    ∴AD=DC=AC=2,
    故答案为:2.
    【点拨】本题考查作图﹣基本作图,勾股定理,线段的垂直平分线的性质等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.
    17.m2+1
    【分析】2m为偶数,设其股是a,则弦为a+2,根据勾股定理列方程即可得到结论.
    解:∵2m为偶数,
    ∴设其股是a,则弦为a+2,
    根据勾股定理得,(2m)2+a2=(a+2)2,
    解得a=m2-1,
    ∴弦长为m2+1,
    故答案为:m2+1.
    【点拨】本题考查了勾股数,勾股定理,熟练掌握勾股定理是解题的关键.
    18.7
    【分析】连接EC,依据垂直平分线的性质得.由已知易得,在Rt△AEC中运用勾股定理求得AE,即可求得答案.
    解:由已知作图方法可得,是线段的垂直平分线,
    连接EC,如图,
    所以,
    所以,
    所以∠BEC=∠CEA=90°,
    因为,,
    所以,
    在中,,
    所以,
    因此的长为7.
    故答案为:7.
    【点拨】本题主要考查中垂线性质,等腰三角形的性质,勾股定理等知识,解题的关键是掌握中垂线上一点到线段两端点距离相等,由勾股定理求得即可.
    19.12
    【分析】我们可将其转化为数学几何图形,如图所示,根据题意,可知的长为10尺,则尺,设芦苇长尺,表示出水深AB,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长和水深.
    解:依题意画出图形,
    设芦苇长尺,
    则水深尺,
    ∵尺,
    ∴尺,
    在中,

    解得,
    即芦苇长13尺,水深为12尺,
    故答案为:12.
    【点评】此题主要考查了勾股定理的应用,解本题的关键是数形结合.
    20.127
    【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数.
    解:∵第一代勾股树中正方形有1+2=3(个),
    第二代勾股树中正方形有1+2+22=7(个),
    第三代勾股树中正方形有1+2+22+23=15(个),

    ∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),
    故答案为:127.
    【点拨】本题考查图形中的规律问题,解题的关键是仔细观察图形,得到图形变化的规律.
    21..
    【分析】先作PC⊥AB于点C,然后利用勾股定理进行求解即可.
    解:如图,作PC⊥AB于点C,
    在Rt△APC中,AP=50海里,∠APC=90°-60°=30°,
    ∴海里,海里,
    在Rt△PCB中,PC=海里,∠BPC=90°-45°=45°,
    ∴PC=BC=海里,
    ∴海里,
    故答案为:.
    【点拨】此题主要考查了勾股定理的应用-方向角问题,求三角形的边或高的问题一般可以转化为用勾股定理解决问题,解决的方法就是作高线.
    22.=
    【分析】连接DE,判断△ABC和△ADE是等腰直角三角形,即可得到.
    解:连接DE,如图
    ∵点,点,点,点,点,
    由勾股定理与网格问题,则
    ,,
    ∴△ABC是等腰直角三角形;
    ∵,,
    ∴,
    ∴,
    ∴△ADE是等腰直角三角形;
    ∴;
    故答案为:=.
    【点拨】本题考查了等腰直角三角形的判定,勾股定理,勾股定理的逆定理,解题的关键是熟练掌握掌握所学的知识,正确判断△ABC和△ADE是等腰直角三角形.
    23.或
    【分析】因为点恰好在原直角三角形纸片的边上,所以分为当落在边上和边上两种情况分析,根据勾股定理求解即可.
    解:当落在边上时,如图(1):
    设交于点,
    由折叠知:,
    ,,
    ,,
    设,则在中,
    在中,
    即.
    当落在边上时,如图(2)
    因为折叠,


    故答案为:或
    【点拨】本题考查了轴对称变换,勾股定理,直角三角形中的性质,正确的作出图形是解题的关键.
    24.2.4或
    【分析】分两种情况:直角三角形的两直角边为3、4或直角三角形一条直角边为3,斜边为4,首先根据勾股定理即可求第三边的长度,再根据三角形的面积即可解题.
    解:若直角三角形的两直角边为3、4,则斜边长为,
    设直角三角形斜边上的高为h,

    ∴.
    若直角三角形一条直角边为3,斜边为4,则另一条直角边为
    设直角三角形斜边上的高为h,

    ∴.
    故答案为:2.4或.
    【点拨】本题考查了勾股定理和直角三角形的面积,熟练掌握勾股定理是解题的关键.
    25.
    【分析】证明三角形全等,再利用勾股定理即可求出.
    解:由题意:平分,于,
    ,,
    又为公共边,


    在中,,由勾股定理得:

    故答案是:.
    【点拨】本题考查了三角形全等及勾股定理,解题的关键是:通过全等找到边之间的关系,再利用勾股定理进行计算可得.
    26.(1) 见分析(2)
    【分析】(1)根据等腰直角三角形的性质可得,进而证明,即可根据证明;
    (2)勾股定理求得根据已知条件证明是等腰三角形可得,进而根据即可求解.
    解:(1)证明:是等腰直角三角形,



    在与中


    (2)在中,,,
    ,
    ,
    ,
    ,
    ,
    ∴∠ADC=∠ACD,
    ,

    【点拨】本题考查了等腰三角形的性质与判定,勾股定理,全等三角形的性质与判定,掌握等腰三角形的性质与判定是解题的关键.
    27.见分析
    【分析】取格点E,连接AE,作AE的中点D,根据等腰三角形三线合一的性质可知:BD即为的角平分线.
    解:如图,射线BD即为所求作.

    【点拨】本题考查作图-应用与设计作图,等腰三角形三线合一的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
    28.(1)图见详解;(2)图见详解,
    【分析】(1)根据题中所给的平移方式可直接进行作图即可;
    (2)由等腰直角三角形的性质可直接进行作图,然后结合图形及勾股定理得出的长.
    解:(1)由题意可得如图所示:
    (2)由题意可得如图所示:
    由图可得:.
    【点拨】本题主要考查平移、等腰直角三角形的性质及勾股定理,熟练掌握平移、等腰直角三角形的性质及勾股定理是解题的关键.
    相关试卷

    初中数学人教版八年级下册17.1 勾股定理课时作业: 这是一份初中数学人教版八年级下册<a href="/sx/tb_c10261_t7/?tag_id=28" target="_blank">17.1 勾股定理课时作业</a>,共32页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    人教版八年级下册16.1 二次根式随堂练习题: 这是一份人教版八年级下册<a href="/sx/tb_c95080_t7/?tag_id=28" target="_blank">16.1 二次根式随堂练习题</a>,共13页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    专题 17.19 勾股定理全章复习与巩固(巩固篇)(专项练习)-八年级数学下册基础知识专项讲练(人教版): 这是一份专题 17.19 勾股定理全章复习与巩固(巩固篇)(专项练习)-八年级数学下册基础知识专项讲练(人教版),共31页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        人教版八年级数学下册基础知识专项讲练 专题17.19 勾股定理(中考真题专练)(基础篇)(专项练习)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map