所属成套资源:人教A版(2019)必修第二册(精品教学课件)
人教A版(2019)必修第二册 第十章 10.1.2 事件的关系和运算(教学课件)
展开
这是一份人教A版(2019)必修第二册 第十章 10.1.2 事件的关系和运算(教学课件),共60页。
第十章 §10.1 随机事件与概率10.1.2 事件的关系和运算学习目标XUE XI MU BIAO1.理解事件的关系和运算.2.通过事件之间的运算,理解互斥事件和对立事件的概念.内容索引知识梳理题型探究随堂演练课时对点练1知识梳理PART ONE知识点一 事件的关系一定包含A=B知识点二 并事件与交事件至少同时A∩B(或AB)知识点三 互斥事件和对立事件不能同时有且仅有一个思考辨析 判断正误SI KAO BIAN XI PAN DUAN ZHENG WU1.若A,B表示随机事件,则A∩B与A∪B也表示事件.( )2.若两个事件是互斥事件,则这两个事件也是对立事件.( )3.若两个事件是对立事件,则这两个事件也是互斥事件.( )4.若事件A与B是互斥事件,则在一次试验中事件A和B至少有一个发生.( )√×√×2题型探究PART TWO例1 某县城有甲、乙两种报纸供居民订阅,记事件A为“只订甲报”,事件B为“至少订一种报”,事件C为“至多订一种报”,事件D为“不订甲报”,事件E为“一种报也不订”.判断下列事件是否为互斥事件,如果是,判断它们是否为对立事件.(1)A与C;一、互斥事件和对立事件的判断解 由于事件C“至多订一种报”中可能只订甲报,即事件A与事件C有可能同时发生,故A与C不是互斥事件.(2)B与E;解 事件B“至少订一种报”与事件E“一种报也不订”是不可能同时发生的,故事件B与E是互斥事件.由于事件B和事件E必有一个发生,故B与E也是对立事件.(3)B与D;解 事件B“至少订一种报”中有可能只订乙报,即有可能不订甲报,也就是说事件B发生,事件D也可能发生,故B与D不是互斥事件.(4)B与C;解 事件B“至少订一种报”中有3种可能:“只订甲报”,“只订乙报”,“订甲、乙两种报”.事件C“至多订一种报”中有3种可能:“一种报也不订”“只订甲报”“只订乙报”.即事件B与事件C可能同时发生,故B与C不是互斥事件.(5)C与E.解 由(4)的分析可知,事件E“一种报也不订”仅仅是事件C的一种可能,事件C与事件E可能同时发生,故C与E不是互斥事件.判断两个事件是否为互斥事件,主要看它们在一次试验中能否同时发生,若不能同时发生,则这两个事件是互斥事件,若能同时发生,则这两个事件不是互斥事件;判断两个事件是否为对立事件,主要看在一次试验中这两个事件是否同时满足两个条件:一是不能同时发生;二是必有一个发生.这两个条件同时成立,那么这两个事件是对立事件,只要有一个条件不成立,那么这两个事件就不是对立事件.跟踪训练1 (1)从一批产品中取出三件产品,设A={三件产品全不是次品},B={三件产品全是次品},C={三件产品不全是次品},则下列结论正确的序号有________.①A与B互斥;②B与C互斥;③A与C互斥;④A与B对立;⑤B与C对立.①②⑤解析 A={三件产品全不是次品}指的是三件产品都是正品,B={三件产品全是次品},C={三件产品不全是次品}包括一件次品,两件次品,三件全是正品三个事件,由此知:A与B是互斥事件,但不对立;A与C是包含关系,不是互斥事件,更不是对立事件;B与C是互斥事件,也是对立事件.所以正确结论的序号有①②⑤.(2)有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向,事件“甲向南”与事件“乙向南”是A.互斥但非对立事件 B.对立事件C.非互斥事件 D.以上都不对√解析 由于每人一个方向,故“甲向南”意味着“乙向南”是不可能的,故是互斥事件,但不是对立事件.二、事件的运算例2 盒子里有6个红球,4个白球,现从中任取3个球,设事件A={3个球中有1个红球2个白球},事件B={3个球中有2个红球1个白球},事件C={3个球中至少有1个红球},事件D={3个球中既有红球又有白球}.求:(1)事件D与A,B是什么样的运算关系?解 对于事件D,可能的结果为:1个红球、2个白球或2个红球、1个白球,故D=A∪B.(2)事件C与A的交事件是什么事件?解 对于事件C,可能的结果为1个红球、2个白球或2个红球、1个白球或3个均为红球,故C∩A=A.延伸探究在本例中,设事件E={3个红球},事件F={3个球中至少有一个白球},那么事件C与B,E是什么运算关系?C与F的交事件是什么?解 由事件C包括的可能结果有1个红球、2个白球,2个红球、1个白球,3个红球三种情况,故B⊆C,E⊆C,而事件F包括的可能结果有1个白球、2个红球,2个白球、1个红球,3个白球,所以C∩F={1个红球、2个白球,2个红球、1个白球}=D.事件间的运算方法(1)利用事件间运算的定义.列出同一条件下的试验所有可能出现的结果,分析并利用这些结果进行事件间的运算.(2)利用Venn图.借助集合间运算的思想,分析同一条件下的试验所有可能出现的结果,把这些结果在图中列出,进行运算.跟踪训练2 在掷骰子的试验中,可以定义许多事件.例如,事件C1={出现1点},事件C2={出现2点},事件C3={出现3点},事件C4={出现4点},事件C5={出现5点},事件C6={出现6点},事件D1={出现的点数不大于1},事件D2={出现的点数大于3},事件D3={出现的点数小于5},事件E={出现的点数小于7},事件F={出现的点数为偶数},事件G={出现的点数为奇数},请根据上述定义的事件,回答下列问题:(1)请举出符合包含关系、相等关系的事件;解 因为事件C1,C2,C3,C4发生,则事件D3必发生,所以C1⊆D3,C2⊆D3,C3⊆D3,C4⊆D3.同理可得,事件E包含事件C1,C2,C3,C4,C5,C6;事件D2包含事件C4,C5,C6;事件F包含事件C2,C4,C6;事件G包含事件C1,C3,C5.且易知事件C1与事件D1相等,即C1=D1.(2)利用和事件的定义,判断上述哪些事件是和事件.解 因为事件D2={出现的点数大于3}={出现4点或出现5点或出现6点},所以D2=C4∪C5∪C6(或D2=C4+C5+C6).同理可得,D3=C1+C2+C3+C4,E=C1+C2+C3+C4+C5+C6,F=C2+C4+C6,G=C1+C3+C5.三、随机事件的表示及含义例3 设A,B,C表示三个随机事件,试将下列事件用A,B,C表示出来.(1)三个事件都发生;解 ABC.(2)三个事件至少有一个发生;解 A∪B∪C.(3)A发生,B,C不发生;(4)A,B都发生,C不发生;(5)A,B至少有一个发生,C不发生;(6)A,B,C中恰好有两个发生.延伸探究本例条件不变,试用A,B,C表示以下事件.(1)三个事件都不发生;(2)三个事件至少有两个发生.清楚随机事件的运算与集合运算的对应关系有助于解决此类问题.跟踪训练3 5个相同的小球,分别标上数字1,2,3,4,5,依次有放回的抽取两个小球.记事件A为“第一次抽取的小球上的数字为奇数”,事件B为“抽取的两个小球上的数字至少有一个是偶数”,事件C为“两个小球上的数字之和为偶数”,试用集合的形式表示A,B,C,A∩B,解 总的样本空间为Ω={(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5)},A={(1,1),(1,2),(1,3),(1,4),(1,5),(3,1),(3,2),(3,3),(3,4),(3,5),(5,1),(5,2),(5,3),(5,4),(5,5)},B={(1,2),(1,4),(2,1),(2,2),(2,3),(2,4),(2,5),(3,2),(3,4),(4,1),(4,2),(4,3),(4,4),(4,5),(5,2),(5,4)},C={(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5)}.A∩B={(1,2),(1,4),(3,2),(3,4),(5,2),(5,4)},3随堂演练PART THREE123451.某人射击一次,设事件A为“击中环数小于4”,事件B为“击中环数大于4”,事件C为“击中环数不小于4”,事件D为“击中环数大于0且小于4”,则正确的关系是A.A与B为对立事件 B.B与C为互斥事件C.C与D为对立事件 D.B与D为互斥事件√123452.抽查10件产品,记事件A为“至少有2件次品”,则A的对立事件为A.至多有2件次品 B.至多有1件次品C.至多有2件正品 D.至少有2件正品√解析 至少有2件次品包含2,3,4,5,6,7,8,9,10件次品.共9种结果,故它的对立事件为含有1或0件次品,即至多有1件次品.3.(多选)设A,B是两个任意事件,下面关系正确的是A.A+B=A B.A+AB=AC. D.A(A+B)=A√√解析 若A+B=A,则B⊆A,故A错误;由题知,AB⊆A∴A+AB=A,B正确;∵A⊆(A+B),∴A(A+B)=A,D正确.12345123454.甲、乙两人破译同一个密码,令甲、乙破译出密码分别为事件A,B,则 表示的含义是__________________,事件“密码被破译”可表示为______________.只有一人破译密码123455.从0,1,2,3,4,5中任取两个数字组成一个两位数.事件A表示组成的两位数是偶数,事件B表示组成的两位数中十位数字大于个位数字,则事件A∩B用样本点表示为__________________________.{10,20,30,40,50,32,42,52,54}课堂小结KE TANG XIAO JIE1.知识清单:(1)事件的包含关系与相等关系.(2)并事件和交事件.(3)互斥事件和对立事件.2.方法归纳:列举法、Venn图法.3.常见误区:互斥事件和对立事件之间的关系易混淆.4课时对点练PART FOUR基础巩固1.从装有4个黑球、2个白球的袋中任取3个球,若事件A “所取的3个球中至多有1个白球”,则与事件A互斥的事件是A.所取的3个球中至少有一个白球B.所取的3个球中恰有2个白球1个黑球C.所取的3个球都是黑球D.所取的3个球中恰有1个白球2个黑球√1234567891011121314151612345678910111213141516解析 从装有4个黑球、2个白球的袋中任取3个球,事件A为“所取的3个球中至多有1个白球”,事件A的互斥事件是所取的3个球中多于1个白球,∴事件A的互斥事件是所取的3个球中恰有2个白球1个黑球.故选B.123456789101112131415162.许洋说:“本周我至少做完三套练习题.”设许洋所说的事件为A,则A的对立事件为A.至多做完三套练习题 B.至多做完两套练习题C.至多做完四套练习题 D.至少做完两套练习题√解析 至少做完3套练习题包含做完3,4,5,6,…套练习题,故它的对立事件为做完0,1,2套练习题,即至多做完2套练习题.123456789101112131415163.向上抛掷一枚均匀的骰子两次,事件A表示两次点数之和小于10,事件B表示两次点数之和能被5整除,则事件 用样本点表示为A.{(5,5)} B.{(4,6),(5,5)}C.{(6,5),(5,5)} D.{(4,6),(6,4),(5,5)}√A.必然事件 B.不可能事件C.A与B恰有一个发生 D.A与B不同时发生√12345678910111213141516123456789101112131415165.(多选)某小组有三名男生和两名女生,从中任选两名去参加比赛,则下列事件是互斥事件的是A.“恰有一名男生”和“全是男生”B.“至少有一名男生”和“至少有一名女生”C.“至少有一名男生”和“全是男生”D.“至少有一名男生”和“全是女生”√√12345678910111213141516解析 A是互斥事件,恰有一名男生的实质是选出的两人中有一名男生和一名女生,它与全是男生不可能同时发生;B不是互斥事件,当选出的两人是一男一女时,“至少有一名男生”和“至少有一名女生”同时发生;C不是互斥事件;D是互斥事件.123456789101112131415166.设某随机试验的样本空间Ω={0,1,2,3,4,5,6,7,8},A={2,3,4},B={3,4,5}.则:(1)A∪B=_________;(2) ∩B=____.{2,3,4,5}{5}7.在某大学的学生中任选一名学生,若事件A表示被选学生是男生,事件B表示该生是大三学生,事件C表示该生是运动员,则事件的含义是______________________________.12345678910111213141516该生是大三男生,但不是运动员123456789101112131415168.现有语文、数学、英语、物理和化学共5本书,从中任取1本,记取到语文、数学、英语、物理、化学书分别为事件A,B,C,D,E,则事件取出的是理科书可记为__________.B∪D∪E9.从某大学数学系图书室中任选一本书.设A={数学书};B={中文版的书};C={2000年后出版的书}.问:(1)A∩B∩ 表示什么事件?12345678910111213141516解 A∩B∩ ={2000年或2000年前出版的中文版的数学书}.(2)在什么条件下有A∩B∩C=A?解 在“图书室中所有数学书都是2000年后出版的且为中文版”的条件下才有A∩B∩C=A.12345678910111213141516(3)如果 =B,那么是否意味着图书室中的所有的数学书都不是中文版的?解 是. =B意味着图书室中的非数学书都是中文版的,而且所有的中文版的书都不是数学书.10.连续抛掷两枚骰子,观察落地时的点数.记事件A={两次出现的点数相同},事件B={两次出现的点数之和为4},事件C={两次出现的点数之差的绝对值为4},事件D={两次出现的点数之和为6}.(1)用样本点表示事件C∩D,A∪B;解 由题意得,事件A={(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)},事件B={(1,3),(2,2),(3,1)},事件C={(1,5),(2,6),(5,1),(6,2)},事件D={(1,5),(2,4),(3,3),(4,2),(5,1)}.C∩D={(1,5),(5,1)},A∪B={(1,1),(1,3),(2,2),(3,1),(3,3),(4,4),(5,5),(6,6)}.1234567891011121314151612345678910111213141516(2)若事件E={(1,3),(1,5),(2,2),(2,6),(3,1),(5,1),(6,2)},则事件E与已知事件是什么运算关系?解 E=B∪C.综合运用11.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设事件A={两弹都击中飞机},事件B={两弹都没击中飞机},事件C={恰有一弹击中飞机},事件D={至少有一弹击中飞机},下列关系不正确的是A.A⊆D B.B∩D=∅C.A∪C=D D.A∪B=B∪D√123456789101112131415161234567891011121314151612.(多选)一箱产品有正品4件、次品3件,从中任取2件,有如下事件,其中互斥事件有A.“恰有1件次品”和“恰有2件次品”B.“至少有1件次品”和“都是次品”C.“至少有1件正品”和“至少有1件次品”D.“至少有1件次品”和“都是正品”√√12345678910111213141516解析 对于A,“恰有1件次品”就是“1件正品,1件次品”,与“2件都是次品”显然是互斥事件;对于B,“至少有1件次品”包括“恰有1件次品”和“2件都是次品”,与“都是次品”可能同时发生,因此这两个事件不是互斥事件;对于C,“至少有1件正品”包括“恰有1件正品”和“2件都是正品”,与“至少有1件次品”不是互斥事件;对于D,“至少有1件次品”包括“恰有1件次品”和“2件都是次品”,与“都是正品”显然是互斥事件,故AD是互斥事件.13.盒子内分别有3个红球,2个白球,1个黑球,从中任取2个球,则下列选项中的两个事件互斥而不对立的是A.至少有1个白球,至多有1个白球B.至少有1个白球,至少有1个红球C.至少有1个白球,没有白球D.至少有1个白球,红球、黑球各1个√1234567891011121314151612345678910111213141516解析 当取出的2个球是1白1红时,A中两个事件同时发生,所以A中的两个事件不是互斥事件,此时B也一样,所以排除A,B;C中,两个事件不可能同时发生,但是必有一个发生,所以C中的两个事件是对立事件,所以排除C;D中,两个事件不可能同时发生,但是当取出的2个球都是红球时,这两个事件都没有发生,所以D中的两个事件是互斥事件但不是对立事件.14.电路如图所示.用A表示事件“电灯变亮”,用B,C,D依次表示“开关Ⅰ闭合”“开关Ⅱ闭合”“开关Ⅲ闭合”,则A=________________________.(用B,C,D间的运算关系式表示)12345678910111213141516(BC)∪(BD)或B∩(C∪D)拓广探究12345678910111213141516√123456789101112131415161234567891011121314151616.某班要进行一次辩论比赛,现有4名男生和2名女生随机分成甲、乙两个辩论小组,每组3人.考虑甲组的人员组成情况,记事件Ak=“甲组有k名女生”.(1)事件A1含有多少个样本点?解 用1,2,3,4表示4名男生,用a,b表示2名女生,因为事件A1=“甲组有1名女生”,所以A1={(1,2,a),(1,2,b),(1,3,a),(1,3,b),(1,4,a),(1,4,b),(2,3,a),(2,3,b),(2,4,a),(2,4,b),(3,4,a),(3,4,b)},共含12个样本点.(2)若事件B=“甲组至少有一名女生”,则事件B与事件Ak有怎样的运算关系?解 事件B=“甲组至少有一名女生”,其含义是甲组有一名女生或甲组有两名女生,所以B=A1∪A2.12345678910111213141516本课结束