(课标全国版)高考数学第一轮复习讲练 第49讲 计数原理 排列与组合(讲+练)原卷版+解析
展开
这是一份(课标全国版)高考数学第一轮复习讲练 第49讲 计数原理 排列与组合(讲+练)原卷版+解析,文件包含课标全国版高考数学第一轮复习讲练测第49讲计数原理排列与组合讲原卷版+解析docx、课标全国版高考数学第一轮复习讲练测第49讲计数原理排列与组合练原卷版+解析docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
1.从甲地到乙地,一天中有5次火车,12次客车,3次飞机航班,还有6次轮船,某人某天要从甲地到乙地,共有不同走法的种数是( )
A.26 B.60
C.18 D.1 080
2.将3张不同的武汉军运会门票分给10名同学中的3人,每人1张,则不同分法的种数是( )
A.2 160 B.720
C.240 D.120
3.从集合{0,1,2,3,4,5}中任取两个互不相等的数a,b组成复数a+bi,其中虚数有( )
A.36个 B.30个
C.25个 D.20个
4.从4名男同学和3名女同学中选出3名参加某项活动,则男女生都有的选法种数是( )
A.18 B.24
C.30 D.36
5.三个人踢毽子,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽子又被踢回给甲,则不同的传递方式共有( )
A.4种 B.6种
C.10种 D.16种
6.A,B,C,D,E五人并排站成一排,如果B必须在A的右侧(A,B可以不相邻),那么不同的排法共有( )
A.24种 B.60种
C.90种 D.120种
7.5 400的正约数有( )
A.48个 B.46个
C.36个 D.38个
8.某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B,C,D中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复),有车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码可选的所有可能情况有( )
A.180种 B.360种
C.720种 D.960种
9.某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B,C,D中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复).有车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码可选的所有可能情况有( )
A.180种 B.360种
C.720种 D.960种
10.从集合{1,2,3,4,…,10}中选出5个数组成该集合的子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有( )
A.32个 B.34个
C.36个 D.38个
【练提升】
1.某班有9名运动员,其中5人会打篮球,6人会踢足球,现从中选出2人分别参加篮球赛和足球赛,则不同的选派方案有( )
A.28种 B.30种
C.27种 D.29种
2.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )
A.12种 B.10种
C.9种 D.8种
3.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )
A.24 B.48
C.60 D.72
4.某学校获得5个高校自主招生推荐名额,其中甲大学2个,乙大学2个,丙大学1个,并且甲大学和乙大学都要求必须有男生参加,学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有( )
A.36种 B.24种
C.22种 D.20种
5.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有( )
A.120种 B.260种
C.340种 D.420种
6.某地实行高考改革,考生除参加语文、数学、英语统一考试外,还需从物理、化学、生物、政治、历史、地理六科中选考三科.学生甲要想报考某高校的法学专业,就必须要从物理、政治、历史三科中至少选考一科,则学生甲的选考方法种数为( )
A.6 B.12
C.18 D.19
7.中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种.现有十二生肖的吉祥物各一个,已知甲同学喜欢牛、马和猴,乙同学喜欢牛、狗和羊,丙同学所有的吉祥物都喜欢,让甲、乙、丙三位同学依次从中选一个作为礼物珍藏,若各人所选取的礼物都是自己喜欢的,则不同的选法有( )
A.50种 B.60种
C.80种 D.90种
8.中国古代儒家要求学生掌握六种基本才能(六艺):礼、乐、射、御、书、数,某校国学社团周末开展“六艺”课程讲座活动,一天连排六节,每艺一节,排课有如下要求:“射”不能排在第一,“数”不能排在最后,则“六艺”讲座不同的排课顺序共有________种.
9.从4名男同学中选出2人,6名女同学中选出3人,并将选出的5人排成一排.
(1)共有多少种不同的排法?
(2)若选出的2名男同学不相邻,共有多少种不同的排法?(用数字表示)
10.用0,1,2,3,4这五个数字,可以组成多少个满足下列条件的没有重复数字的五位数?
(1)比21 034大的偶数;
(2)左起第二、四位是奇数的偶数.
第49讲 计数原理 排列与组合
【练基础】
1.从甲地到乙地,一天中有5次火车,12次客车,3次飞机航班,还有6次轮船,某人某天要从甲地到乙地,共有不同走法的种数是( )
A.26 B.60
C.18 D.1 080
【答案】A
【解析】由分类加法计数原理知有5+12+3+6=26(种)不同走法.
2.将3张不同的武汉军运会门票分给10名同学中的3人,每人1张,则不同分法的种数是( )
A.2 160 B.720
C.240 D.120
【答案】B
【解析】分步来完成此事.第1张有10种分法;第2张有9种分法;第3张有8种分法,共有10×9×8=720种分法.
3.从集合{0,1,2,3,4,5}中任取两个互不相等的数a,b组成复数a+bi,其中虚数有( )
A.36个 B.30个
C.25个 D.20个
【答案】C
【解析】因为a,b互不相等且a+bi为虚数,所以b只能从{1,2,3,4,5}中选,有5种选法,a从剩余的5个数中选,有5种选法,所以共有虚数5×5=25(个),故选C.
4.从4名男同学和3名女同学中选出3名参加某项活动,则男女生都有的选法种数是( )
A.18 B.24
C.30 D.36
【答案】C
【解析】法一:选出的3人中有2名男同学1名女同学的方法有Ceq \\al(2,4)Ceq \\al(1,3)=18种,选出的3人中有1名男同学2名女同学的方法有Ceq \\al(1,4)Ceq \\al(2,3)=12种,故3名学生中男女生都有的选法有Ceq \\al(2,4)Ceq \\al(1,3)+Ceq \\al(1,4)Ceq \\al(2,3)=30种.故选C.
法二:从7名同学中任选3名的方法数,再减去所选3名同学全是男生或全是女生的方法数,即Ceq \\al(3,7)-Ceq \\al(3,4)-Ceq \\al(3,3)=30.故选C.
5.三个人踢毽子,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽子又被踢回给甲,则不同的传递方式共有( )
A.4种 B.6种
C.10种 D.16种
【答案】B
【解析】分两类:甲第一次踢给乙时,满足条件的有3种传递方式(如图);同理,甲先传给丙时,满足条件的也有3种传递方式.由分类加法计数原理可知,共有3+3=6(种)传递方式.
6.A,B,C,D,E五人并排站成一排,如果B必须在A的右侧(A,B可以不相邻),那么不同的排法共有( )
A.24种 B.60种
C.90种 D.120种
【答案】B
【解析】可先排C,D,E三人,共有Aeq \\al(3,5)种,剩余A,B两人只有一种排法,故满足条件的排法共有Aeq \\al(3,5)×1=60(种).
7.5 400的正约数有( )
A.48个 B.46个
C.36个 D.38个
【答案】A
【解析】5 400=23×33×52,5 400的正约数一定是由2的幂与3的幂和5的幂相乘的结果,所以正约数个数为(3+1)×(3+1)×(2+1)=48.故选A.
8.某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B,C,D中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复),有车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码可选的所有可能情况有( )
A.180种 B.360种
C.720种 D.960种
【答案】D
【解析】按照车主的要求,从左到右第一个号码有5种选法,第二个号码有3种选法,其余三个号码各有4种选法.因此车牌号码可选的所有可能情况有5×3×4×4×4=960(种).
9.某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B,C,D中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复).有车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码可选的所有可能情况有( )
A.180种 B.360种
C.720种 D.960种
【答案】D
【解析】按照车主的要求,从左到右第一个号码有5种选法,第二个号码有3种选法,其余三个号码各有4种选法.因此车牌号码可选的所有可能情况有5×3×4×4×4=960(种).
10.从集合{1,2,3,4,…,10}中选出5个数组成该集合的子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有( )
A.32个 B.34个
C.36个 D.38个
【答案】A
【解析】先把数字分成5组:{1,10},{2,9},{3,8},{4,7},{5,6},由于选出的5个数中,任意两个数的和都不等于11,所以从每组中任选一个数字即可,故共有2×2×2×2×2=32(个)这样的子集.
【练提升】
1.某班有9名运动员,其中5人会打篮球,6人会踢足球,现从中选出2人分别参加篮球赛和足球赛,则不同的选派方案有( )
A.28种 B.30种
C.27种 D.29种
【答案】A
【解析】有9名运动员,其中5人会打篮球,6人会踢足球,则有2人既会踢足球又会打篮球,有3人只会打篮球,有4人只会踢足球,所以选派的方案有四类:选派两种球都会的运动员有2种方案;选派两种球都会的运动员中一名踢足球,只会打篮球的运动员打篮球,有2×3=6(种)方案;选派两种球都会的运动员中一名打篮球,只会踢足球的运动员踢足球,有2×4=8(种)方案;选派只会打篮球和踢足球的运动员分别打篮球和踢足球,有3×4=12(种)方案.综上可知,共有2+6+8+12=28(种)方案,故选A.
2.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )
A.12种 B.10种
C.9种 D.8种
【答案】A
【解析】将4名学生均分为2个小组共有eq \f(C\\al(2,4)C\\al(2,2),A\\al(2,2))=3(种)分法;将2个小组的同学分给2名教师共有Aeq \\al(2,2)=2(种)分法;最后将2个小组的人员分配到甲、乙两地有Aeq \\al(2,2)=2(种)分法.故不同的安排方案共有3×2×2=12(种).
3.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )
A.24 B.48
C.60 D.72
【答案】D
【解析】由题意,要组成没有重复数字的五位奇数,则个位数应该为1或3或5,其他位置共有Aeq \\al(4,4)种排法,所以奇数的个数为3Aeq \\al(4,4)=72,故选D.
4.某学校获得5个高校自主招生推荐名额,其中甲大学2个,乙大学2个,丙大学1个,并且甲大学和乙大学都要求必须有男生参加,学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有( )
A.36种 B.24种
C.22种 D.20种
【答案】B
【解析】根据题意,分两种情况讨论:第一种,3名男生每个大学各推荐1人,2名女生分别推荐给甲大学和乙大学,共有Aeq \\al(3,3)Aeq \\al(2,2)=12种推荐方法;第二种,将3名男生分成两组分别推荐给甲大学和乙大学,共有Ceq \\al(2,3)Aeq \\al(2,2)Aeq \\al(2,2)=12种推荐方法.故共有24种推荐方法.
5.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有( )
A.120种 B.260种
C.340种 D.420种
【答案】D
【解析】由题意可知上下两块区域可以相同,也可以不同,则共有5×4×3×1×3+5×4×3×2×2=180+240=420(种)涂色方案.故选D.
6.某地实行高考改革,考生除参加语文、数学、英语统一考试外,还需从物理、化学、生物、政治、历史、地理六科中选考三科.学生甲要想报考某高校的法学专业,就必须要从物理、政治、历史三科中至少选考一科,则学生甲的选考方法种数为( )
A.6 B.12
C.18 D.19
【答案】D
【解析】从六科中选考三科的选法有Ceq \\al(3,6)种,其中不选物理、政治、历史中任意一科的选法有1种,因此学生甲的选考方法共有Ceq \\al(3,6)-1=19种.
7.中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种.现有十二生肖的吉祥物各一个,已知甲同学喜欢牛、马和猴,乙同学喜欢牛、狗和羊,丙同学所有的吉祥物都喜欢,让甲、乙、丙三位同学依次从中选一个作为礼物珍藏,若各人所选取的礼物都是自己喜欢的,则不同的选法有( )
A.50种 B.60种
C.80种 D.90种
【答案】C
【解析】根据题意,按甲的选择不同分成2种情况讨论:若甲选择牛,此时乙的选法有2种,丙的选法有10种,共有2×10=20种不同的选法;若甲选择马或猴,此时甲的选法有2种,乙的选法有3种,丙的选法有10种,共有2×3×10=60种不同的选法.综上,一共有20+60=80种选法.
8.中国古代儒家要求学生掌握六种基本才能(六艺):礼、乐、射、御、书、数,某校国学社团周末开展“六艺”课程讲座活动,一天连排六节,每艺一节,排课有如下要求:“射”不能排在第一,“数”不能排在最后,则“六艺”讲座不同的排课顺序共有________种.
【解析】根据题意,分2种情况讨论:
①“数”排在第一,则剩下的“五艺”全排列,安排在剩下的5节,有Aeq \\al(5,5)=120(种)情况.
②“数”不排在第一,则“数”的排法有4种,“射”的排法有4种,剩下的“四艺”全排列,安排在剩下的4节,有Aeq \\al(4,4)=24(种)情况,则此时共有4×4×24=384(种)情况.
综上,共有120+384=504(种)排课顺序.
【答案】504
9.从4名男同学中选出2人,6名女同学中选出3人,并将选出的5人排成一排.
(1)共有多少种不同的排法?
(2)若选出的2名男同学不相邻,共有多少种不同的排法?(用数字表示)
【解析】(1)从4名男生中选出2人,有Ceq \\al(2,4)种选法,
从6名女生中选出3人,有Ceq \\al(3,6)种选法,
根据分步乘法计数原理知选出5人,再把这5个人进行排列,共有Ceq \\al(2,4)Ceq \\al(3,6)Aeq \\al(5,5)=14 400(种).
(2)在选出的5个人中,若2名男生不相邻,则第一步先排3名女生,第二步再让男生插空,根据分步乘法计数原理知共有Ceq \\al(2,4)Ceq \\al(3,6)Aeq \\al(3,3)Aeq \\al(2,4)=8 640(种).
10.用0,1,2,3,4这五个数字,可以组成多少个满足下列条件的没有重复数字的五位数?
(1)比21 034大的偶数;
(2)左起第二、四位是奇数的偶数.
【解析】(1)可分五类,当末位数字是0,而首位数字是2时,有6个五位数;
当末位数字是0,而首位数字是3或4时,有Ceq \\al(1,2)Aeq \\al(3,3)=12个五位数;
当末位数字是2,而首位数字是3或4时,有Ceq \\al(1,2)Aeq \\al(3,3)=12个五位数;
当末位数字是4,而首位数字是2时,有3个五位数;
当末位数字是4,而首位数字是3时,有Aeq \\al(3,3)=6个五位数.
故共有6+12+12+3+6=39个满足条件的五位数.
(2)可分为两类:
末位数是0,个数有Aeq \\al(2,2)·Aeq \\al(2,2)=4;
末位数是2或4,个数有Aeq \\al(2,2)·Ceq \\al(1,2)=4.
故共有4+4=8个满足条件的五位数.
相关试卷
这是一份(课标全国版)高考数学第一轮复习讲练 第38讲 直线与方程(讲+练)原卷版+解析,文件包含课标全国版高考数学第一轮复习讲练测第38讲直线与方程练原卷版+解析docx、课标全国版高考数学第一轮复习讲练测第38讲直线与方程讲原卷版+解析docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
这是一份(课标全国版)高考数学第一轮复习讲练测 第01讲 集合(讲+练)原卷版+解析,文件包含课标全国版高考数学第一轮复习讲练测第01讲集合练原卷版+解析docx、课标全国版高考数学第一轮复习讲练测第01讲集合讲原卷版+解析docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
这是一份(课标全国版)高考数学第一轮复习讲练测 第49讲 计数原理 排列与组合(讲+练)原卷版+解析,文件包含课标全国版高考数学第一轮复习讲练测第49讲计数原理排列与组合讲原卷版+解析docx、课标全国版高考数学第一轮复习讲练测第49讲计数原理排列与组合练原卷版+解析docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。