终身会员
搜索
    上传资料 赚现金

    (人教A版2019选择性必修第一册)高二数学上册数学同步精讲 拓展一:轨迹方程(精练)(原卷版+解析)

    立即下载
    加入资料篮
    (人教A版2019选择性必修第一册)高二数学上册数学同步精讲  拓展一:轨迹方程(精练)(原卷版+解析)第1页
    (人教A版2019选择性必修第一册)高二数学上册数学同步精讲  拓展一:轨迹方程(精练)(原卷版+解析)第2页
    (人教A版2019选择性必修第一册)高二数学上册数学同步精讲  拓展一:轨迹方程(精练)(原卷版+解析)第3页
    还剩9页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    (人教A版2019选择性必修第一册)高二数学上册数学同步精讲 拓展一:轨迹方程(精练)(原卷版+解析)

    展开

    这是一份(人教A版2019选择性必修第一册)高二数学上册数学同步精讲 拓展一:轨迹方程(精练)(原卷版+解析),共12页。


    拓展一:轨迹方程(精练)一、单选题1.古希腊几何学家阿波罗尼斯证明过这样一个命题:平面内到两定点距离之比为常数的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.在平面直角坐标系中,,,点满足,则点的轨迹方程为(       )A. B. C. D.2.已知圆,直线,过上的点作圆的两条切线,切点分别为,则弦中点的轨迹方程为(       )A. B.C. D.3.正三角形OAB的边长为1,动点C满足,且,则点C的轨迹是(       )A.线段 B.直线 C.射线 D.圆4.已知圆,圆,过动点P分别作圆、圆的切线PA,PB(A,B为切点),使得,则动点P的轨迹方程为(       ).A. B.C. D.二、填空题5.阿波罗尼斯(约前262—前190年)证明过这样一个命题:平面内到两定点距离之比为常数的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.若平面内两定点,,动点P满足,则点P的轨迹方程是___________.6.已知点,,动点满足,则点P的轨迹为___________.7.当点A在曲线上运动时,连接A与定点,则AB的中点P的轨迹方程为______.8.已知圆的方程为:,定点,若,为圆上的两个动点,则线段的中点的轨迹方程为______;若弦经过点,则中点的轨迹方程为______.三、解答题(共0分)9.直线与圆相交于A,B两点,O为圆心,当k变化时,求弦AB的中点M的轨迹方程.10.如图,圆与圆内切,且,大圆的半径为5.过动点P分别作圆、圆的切线PM、PN(M、N分别为切点),使,试通过建立适当的平面直角坐标系,求动点P的轨迹.11.平面上有一条长度为定值的线段AB.(1)到线段AB两个端点距离的平方差为k的点的轨迹是什么图形?说明理由;(2)到线段AB两个端点距离的平方和为k的点的轨迹是什么图形?说明理由.12.已知圆,直线l满足___________(从①l过点,②l斜率为2,两个条件中,任选一个补充在上面问题中并作答),且与圆C交于A,B两点,求AB中点M的轨迹方程.13.在边长为1的正方形ABCD中,边AB、BC上分别有一个动点Q、R,且.求直线AR与DQ的交点P的轨迹方程. 拓展一:轨迹方程(精练)一、单选题1.古希腊几何学家阿波罗尼斯证明过这样一个命题:平面内到两定点距离之比为常数的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.在平面直角坐标系中,,,点满足,则点的轨迹方程为(       )A. B. C. D.【答案】B∵,即设,则,整理得故选:B.2.已知圆,直线,过上的点作圆的两条切线,切点分别为,则弦中点的轨迹方程为(       )A. B.C. D.【答案】B易得弦中点为直线和的交点,设,则直线的方程为,又均与圆相切,故,故四点共圆,且为以为直径的圆与圆的公共弦.又以为直径的圆的方程为,即,故的方程为相减,即.又,所以,代入有,化简得.当时,;当时,均满足方程.又当时,不满足题意.综上有点的轨迹方程为故选:B3.正三角形OAB的边长为1,动点C满足,且,则点C的轨迹是(       )A.线段 B.直线 C.射线 D.圆【答案】D解:方法一:由题可知:,又所以,即所以点C的轨迹是圆.方法二:由题可知:,如图,以O为原点OB为x轴,过O点与OB垂直的直线为y轴建立平面直角坐标系,所以设 ,又所以整理得:所以点C的轨迹是圆.故选:D.4.已知圆,圆,过动点P分别作圆、圆的切线PA,PB(A,B为切点),使得,则动点P的轨迹方程为(       ).A. B.C. D.【答案】D由得.因为两圆的半径均为1,则,则,即.所以点P的轨迹方程为.故选:D二、填空题5.阿波罗尼斯(约前262—前190年)证明过这样一个命题:平面内到两定点距离之比为常数的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.若平面内两定点,,动点P满足,则点P的轨迹方程是___________.【答案】设,即,整理得:即.故答案为:.6.已知点,,动点满足,则点P的轨迹为___________.【答案】,,化简得:,所以,点P的轨迹为圆:故答案为:7.当点A在曲线上运动时,连接A与定点,则AB的中点P的轨迹方程为______.【答案】设,则由中点坐标公式可得,代入得整理得P的轨迹方程为.故答案为:8.已知圆的方程为:,定点,若,为圆上的两个动点,则线段的中点的轨迹方程为______;若弦经过点,则中点的轨迹方程为______.【答案】          设,,因为为线段的中点,所以,,又因为为圆上一点,所以,即,所以点的轨迹方程为.因为的中点为,所以,又因为经过点,所以,所以点的轨迹是以线段为直径的圆,其轨迹方程为.故答案为:;.三、解答题(共0分)9.直线与圆相交于A,B两点,O为圆心,当k变化时,求弦AB的中点M的轨迹方程.【答案】设,易知直线恒过定点,再由,得,∴,整理得.∵点M应在圆内且不在x轴上,∴所求的轨迹为圆内的部分且不在x轴上.解方程组得两曲线交点的横坐标为,故所求轨迹方程为.10.如图,圆与圆内切,且,大圆的半径为5.过动点P分别作圆、圆的切线PM、PN(M、N分别为切点),使,试通过建立适当的平面直角坐标系,求动点P的轨迹.【答案】圆心为,半径为的圆.如图,以所在直线为轴,以的中点为原点,建立直角坐标系,则,设,连接 则 根据勾股定理可得,,由,可得,平方整理可得:,所以动点P的轨迹为圆心为,半径为的圆.11.平面上有一条长度为定值的线段AB.(1)到线段AB两个端点距离的平方差为k的点的轨迹是什么图形?说明理由;(2)到线段AB两个端点距离的平方和为k的点的轨迹是什么图形?说明理由.【答案】(1)到线段AB两个端点距离的平方差为k的点的轨迹为两条直线;(2)当时,到线段AB两个端点距离的平方和为k的点的轨迹为以的中点为圆心,半径为的圆,当时,到线段AB两个端点距离的平方和为k的点的轨迹为的中点,当时,到线段AB两个端点距离的平方和为k的点的轨迹不存在.(1)如图以直线为轴,线段的中点为原点,建立平面直角坐标系,则,,设为曲线上的任意一点,因为点到线段AB两个端点距离的平方差为k所以或所以或化简可得或,所以到线段AB两个端点距离的平方差为k的点的轨迹为两条直线;(2)设为曲线上的任意一点,因为点到线段AB两个端点距离的平方和为k所以,所以,化简可得:,当时,,曲线的轨迹为以原点为圆心,半径为的圆,当时,,曲线的轨迹为点,当时,,曲线的轨迹不存在,所以当时,到线段AB两个端点距离的平方和为k的点的轨迹为以的中点为圆心,半径为的圆,当时,到线段AB两个端点距离的平方和为k的点的轨迹为的中点,当时,到线段AB两个端点距离的平方和为k的点的轨迹不存在.12.已知圆,直线l满足___________(从①l过点,②l斜率为2,两个条件中,任选一个补充在上面问题中并作答),且与圆C交于A,B两点,求AB中点M的轨迹方程.【答案】条件选择见解析,答案见解析.选择条件①,设点,令定点为P,因直线l过点P,且与圆C交于A,B两点,M为AB的中点,当直线l不过圆心C(0,0)时,则,有,当直线l过圆心C时,圆心C是弦AB中点,此时,等式成立,因此有,而,于是得,即,由解得,,而直线与圆相切的切点在圆C内,由点M在圆C内,得且,所以AB中点M的轨迹方程是:(且).选择条件②,设点,因l斜率为2,且与圆C交于A,B两点,M为AB的中点,当直线l不过圆心C时,则,则M的轨迹是过圆心且垂直于l的直线在圆C内的部分(除点C外),当直线l过圆心C时,圆心C是弦AB中点,即点C在点M的轨迹上,因此,M的轨迹是过圆心且垂直于l的直线在圆C内的部分,而过圆心且垂直于l的直线为,由解得或,而点M在圆C内,则有,所以AB中点M的轨迹方程是:.13.在边长为1的正方形ABCD中,边AB、BC上分别有一个动点Q、R,且.求直线AR与DQ的交点P的轨迹方程.【答案】分别以AB,AD边所在的直线为x轴、y轴建立直角坐标系.如图所示,则点、、、,设动点,,由知:,则.当时,直线AR:①,直线DQ:,则②,①×②得:,化简得.当时,点P与原点重合,坐标也满足上述方程.故点P的轨迹方程为.
    • 精品推荐
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map