人教版九年级下册28.1 锐角三角函数精品随堂练习题
展开TOC \ "1-3" \h \u
\l "_Tc25597" 【题型1 构建直角三角形求锐角三角函数值】 PAGEREF _Tc25597 \h 1
\l "_Tc32654" 【题型2 用等角转换法求锐角三角函数值】 PAGEREF _Tc32654 \h 2
\l "_Tc21021" 【题型3 锐角三角函数与相似三角形的综合应用】 PAGEREF _Tc21021 \h 3
\l "_Tc17309" 【题型4 锐角三角函数与圆的综合应用】 PAGEREF _Tc17309 \h 4
\l "_Tc26825" 【题型5 解非直角三角形】 PAGEREF _Tc26825 \h 6
\l "_Tc11437" 【题型6 巧设辅助未知数解直角三角形】 PAGEREF _Tc11437 \h 7
\l "_Tc9593" 【题型7 构造直角三角形进行线段或角的计算】 PAGEREF _Tc9593 \h 8
\l "_Tc4507" 【题型8 解直角三角形与圆的综合应用】 PAGEREF _Tc4507 \h 9
\l "_Tc7632" 【题型9 构造直角三角形解决实际问题】 PAGEREF _Tc7632 \h 10
【题型1 构建直角三角形求锐角三角函数值】
【例1】(2023春·安徽·九年级专题练习)如图,在四边形ABCD中,∠B=60°,∠C=90°,E为边BC上的点,△ADE为等边三角形,BE=8,CE=2,则tan∠AEB的值为( )
A.375B.275C.335D.435
【变式1-1】(2023春·湖北襄阳·九年级统考期中)如图,在△ABD中,∠A=90°,若BE=mAC,CD=mAB,连接BC、DE交于点F,则cs∠BFE的值为 .
【变式1-2】(2023·四川成都·统考中考真题)如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,过D作DE∥BC交AC于点E,将△DEC沿DE折叠得到△DEF,DF交AC于点G.若AGGE=73,则tanA= .
【变式1-3】(2023春·江苏常州·九年级校考期末)如图,在△ABC中,AB=AC=5,BC=4,AD是BC边上的高,将△ABC绕点C旋转到△EFC(点E、F分别与点A、B对应),点F落在线段AD上,连接AE,则cs∠EAF= .
【题型2 用等角转换法求锐角三角函数值】
【例2】(2023秋·江苏常州·九年级统考期末)已知点P在△ABC内,连接PA、PB、PC,在△PAB、△PBC、△PAC中,如果存在一个三角形与△ABC相似,那么就称点P为△ABC的自相似点,如图,在直角△ABC中,∠ACB=90°,AC=12,BC=5,如果点P为直角△ABC的自相似点,那么tan∠ACP= .
【变式2-1】(2023春·吉林长春·九年级校考期中)如图,在矩形ABCD中,连结AC,延长BC到点E,使CE=AC,过点E作AC的平行线与AD的延长线交于点F.
(1)求证:四边形ACEF是菱形;
(2)连结AE,若tan∠ACB=158,则tan∠AEF的值为________.
【变式2-2】(2023秋·上海黄浦·九年级统考期末)如图,平面上七个点A、B、C、D、E、F、G,图中所有的连线长均相等,则cs∠BAF= .
【变式2-3】(2023春·山东菏泽·九年级统考期中)如图,在▱ABCD中,对角线AC、BD交于点O.点M是BC边的中点,连接AM、OM,作CF∥AM.已知OC平分∠BCF,OB平分∠AOM,若BD=32,则sin∠BAM的值为
【题型3 锐角三角函数与相似三角形的综合应用】
【例3】(2023春·九年级课时练习)如图,四边形ABCD为矩形,点E为边AB一点,将△ADE沿DE折叠,点A落在矩形ABCD内的点F处,连接BF,且BE=EF,∠BEF的正弦值为2425,则ADAB的值为( )
A.23B.45C.35D.2425
【变式3-1】(2023·福建·模拟预测)如图,在矩形ABCD中,AB=4,AD=2,点M、N分别在边AB、AD上(不与端点重合),且DM⊥CN于点P.若∠APD=135°,则cs∠MNP= .
【变式3-2】(2023春·浙江杭州·九年级专题练习)如图,在Rt△ABC中,∠C=90°,csB=35,将△ABC绕顶点C旋转得到△A′B′C′,且使得B′恰好落在AB边上,A′B′与AC交于点D,则B′DCD的值为( )
A.25B.720C.310D.920
【变式3-3】(2023·全国·九年级专题练习)如图,在△ABC中,∠ABC=90°,tan∠BAC=12,AD=2,BD=4,连接CD,则CD长的最大值是( )
A.25+34B.25+1C.25+32D.25+2
【题型4 锐角三角函数与圆的综合应用】
【例4】(2023·广东惠州·校考模拟预测)如图,AB是⊙O的直径,点E为弧AC的中点,AC、BE交于点D,过A的切线交BE的延长线于F.
(1)求证:AD=AF;
(2)若AOAF=23,求tan∠OAD的值.
【变式4-1】(2023·湖北武汉·校考三模)如图,AB是⊙O的直径,PA是⊙O的切线,PB交⊙O于D,点C是弧BD上一点,PC=PA.
(1)求证:PC是⊙O的切线;
(2)若CD∥AB,求sin∠PCD的值.
【变式4-2】(2023·浙江杭州·校考三模)如图1,三角形ABC内接于圆O,点D在圆O上,连接AD和CD,CD交AB于点E,∠ADE+∠CAB=90°
(1)求证:AB是直径;
(2)如图2,点F在线段BE上,AC=AF,∠DCF=45°
①求证:DE=DA;
②若AB=kAD,用含k的表达式表示csB.
【变式4-3】(2023·广东湛江·统考二模)如图CD是⊙O直径,A是⊙O上异于C,D的一点,点B是DC延长线上一点,连AB、AC、AD,且∠BAC=∠ADB.
(1)求证:直线AB是⊙O的切线;
(2)若BC=2OC,求tan∠ADB的值;
(3)在(2)的条件下,作∠CAD的平分线AP交⊙O于P,交CD于E,连PC、PD,若AB=26,求AE⋅AP的值.
【题型5 解非直角三角形】
【例5】(2023·天津河北·统考二模)如图,在矩形ABCD中,AB=2,BC=23,连接AC,点E在AC上,∠DEF=90°,EC平分∠DEF,AE= .
【变式5-1】(2023春·九年级单元测试)在△ABC中,AB=2,AC=3,cs∠ACB=223,则∠ABC的大小为 度.
【变式5-2】(2023春·江苏苏州·九年级苏州市景范中学校校考期末)已知:在△ABC中,AC=a,AB与BC所在直线成45°角,AC与BC所在直线形成的夹角的余弦值为255(即csC=255),则AC边上的中线长是 .
【变式5-3】(2023·安徽合肥·合肥市第四十五中学校考模拟预测)已知:在△ABC中,BA=BC,sin∠CAB=45,点E是AC的中点,F是直线BC上一点,连接EF,将△EFC沿着EF折叠,点C的对应点为D,连接AD.
(1)如图1,若点D在线段AB上,求证:EF∥AD;
(2)如图2,DF与AB交于点M,连接AF,若∠DAF=∠EAF,求证:点M是AB的中点;
(3)如图3,点F在CB延长线上,DF与AB交于点M,EF交AB于点N,若DE=EN=3,求MF·MA.
【题型6 巧设辅助未知数解直角三角形】
【例6】(2023·辽宁沈阳·统考二模)如图,在平行四边形ABCD中,sinA=1213,BC=13,CD=24,点E在边CD上,将△BCE沿直线BE翻折,点C落在点F处,且AF=BF,则CE的长为 .
【变式6-1】(2023·上海·九年级期末)如图,在Rt△ABC,∠C=90°,AC=6,BC=8,D是BC的中点,点E在边AB上,将△BDE沿直线DE翻折,使得点B落在同一平面内的点B′处,线段B′D交边AB于点F,联结AB′,当△AB′F是直角三角形时,BE的长为 .
【变式6-2】(2023春·浙江·九年级期末)如图,四边形ABCD,CEFG均为菱形,∠A=∠F,连结BE,EG,EG//BC,EB⊥BC,若sin∠EGD=13,菱形ABCD的周长为12,则菱形CEFG的周长为 .
【变式6-3】(2023秋·福建泉州·九年级校考期中)如图,▱ABCD中,对角线AC与BD相交于点O,∠ABD=∠ACB,G是线段OD上一点,且∠DGC−∠DCG=90°,①当AC⊥BD时,OGGD的值为 ,②当tan∠CDB=24时,OGGD的值为 .
【题型7 构造直角三角形进行线段或角的计算】
【例7】(2023·江苏无锡·校联考一模)如图,已知四边形ABCD为矩形,AB=4,BC=8,点E在BC上且CE=AE,则CE= ;若点F为平面内一点,且∠AFC=90°,连接EF,当tan∠CEF=2时,EF的值为 .
【变式7-1】(2023·黑龙江哈尔滨·统考一模)如图,在四边形ABCD中,AD=BC,∠ADC=∠ABC,tan∠ADC=43,延长AB、DC交于点P,若CD=114,PB=3CD,则线段AD的长为 .
【变式7-2】(2023春·江苏常州·九年级校考期末)如图,在△ABC中,AB=AC=10,点D、E分别是边AB、边BC上的点,连接CD,∠CDE=∠B,F是DE延长线上一点,连接FC,∠FCE=∠ACD.
(1)判断△CDF的形状,并说明理由;
(2)若AD=4,求EFDE的值;
(3)若sinB=35,BD=BE.
①求BDDE的值;
②求FC的长.
【变式7-3】(2023春·安徽·九年级专题练习)如图1,△ABC的内角∠ABC和外角∠ACP的平分线相交于点D,AE平分∠BAC并交BD于点E.
(1)求证:∠BAC=2∠D;
(2)若BC=AC,且cs∠BAC=35,求BEDE,
(3)如图2,过点D作DF⊥BC,垂足为F,BFDF=3,其中BEDE=12,连接AD、EC,求ABBC.
【题型8 解直角三角形与圆的综合应用】
【例8】(2023·黑龙江绥化·校考三模)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的圆O分别交AB,AC于点E,F,连接EF.
(1)求证:BC是圆O的切线;
(2)求证:AD2=AF⋅AB;
(3)若BE=16,sinB=513,求AD的长.
【变式8-1】(2023·湖北武汉·校联考模拟预测)点D在以AB为直径的⊙O上,分别以AB,AD为边作平行四边形ABCD.
(1)如图(1),若∠C=45°,求证:CD与⊙O相切;
(2)如图(2),CD与⊙O交于点E,若csA=35,求DECE的值.
【变式8-2】(2023·广东深圳·统考模拟预测)如图,已知AB为⊙O的直径,C为⊙O上的一点,连接AC、BC,D为BC延长线上一点,连接AD,∠DAC=∠B.
(1)求证:AD为⊙O的切线;
(2)若E为弧AB的中点,连接AE、CE,tan∠AEC=23,CE=10,求⊙O的半径.
【变式8-3】(2023·湖南长沙·校考一模)如图1,在Rt△ABC中,∠ABC=90°,AB是⊙O的直径,⊙O交AC于点D,过点D的直线交BC于点E,交AB的延长线于点P,PD是⊙O的切线.
(1)求证:BE=CE;
(2)若BP=3,∠P=∠PDB,求图中阴影部分的周长;
(3)如图2,AM=BM,连接DM,交AB于点N,若tan∠DMB=12,求MN:MD的值.
【题型9 构造直角三角形解决实际问题】
【例9】(2023·浙江温州·校联考二模)长嘴壶茶艺表演是一项深受群众喜爱的民俗文化,所用到的长嘴壶更是历史悠久.图1是某款长嘴壶模型放置在水平桌面l上的抽象示意图,已知壶身AB=AD=BC=120cm,CD=40cm,壶嘴EF=150cm,且CD∥AB,EF∥BC,DE=3AE,则sin∠FED= ,如图2,若长嘴壶中装有若干茶水,绕点A转动壶身,当恰好倒出茶水时,FD∥l,则此时出水口F到桌面的距离为 cm.
【变式9-1】(2023春·浙江·九年级专题练习)火灾是最常见、最多发的威胁公众安全和社会发展的主要灾害之一,消防车是消防救援的主要装备.图1是某种消防车云梯,图2是其侧面示意图,点D,B,O在同一直线上,DO可绕着点O旋转,AB为云梯的液压杆,点O,A,C在同一水平线上,其中BD可伸缩,套管OB的长度不变,在某种工作状态下测得液压杆AB=3m,∠BAC=53°,∠DOC=37°.
(1)求BO的长.
(2)消防人员在云梯末端点D高空作业时,将BD伸长到最大长度6m,云梯DO绕着点O顺时针旋转一定的角度,消防人员发现铅直高度升高了3m,求云梯OD旋转了多少度.(参考数据:sin37°≈35,tan37°≈34,sin53°≈45,tan53°≈43,sin64°≈0.90,cs64°≈0.44)
【变式9-2】(2023·浙江温州·统考二模)如图1是一款便携式拉杆车,其侧面示意图如图2所示,前轮⊙O的直径为12cm,拖盘OE与后轮⊙O′相切于点N,手柄OF⊥OE.侧面为矩形ABCD的货物置于拖盘上,AB=20cm,BC=52cm.如图3所示,倾斜一定角度拉车时,货物绕点B旋转,点C落在OF上,若tan∠ABE=15,则OC的长为 cm,同一时刻,点C离地面高度ℎ=56cm,则点A离地面高度为 cm.
【变式9-3】(2023·江西九江·统考三模)如图1是某品牌的纸张打孔机的实物图,图2是从中抽象出的该打孔机处于打孔前状态的侧面示意图,其中打孔机把柄OA=5cm,BE是底座,OA与BE所成的夹角为36.8°,O点是把柄转轴所在的位咒,且O点到底座BE的距离OC=2cm.OD与一根套管相连,OD可绕O点转动,此时,OD∥BE,套管内含打孔针MN,打孔针的顶端M触及到OA,但与OA不相连,MN始终与BE垂直,且OM=1cm,MN=2cm.
(1)打孔针MN的针尖N离底座BE的距离是多少厘米?
(2)压下把柄OA,直到A点与B点重合,如图3,此时,M.D两点重合,把柄OA将压下打孔针MN并将它锲入放在底座BE上的纸张与底座之内,从而完成纸张打孔,问:打孔针MN锲入底座BE有多少厘米?
(参考数据:sin36.8°≈35,cs36.8°≈45,tan36.8°≈34)
专题7.6 锐角三角函数章末九大题型总结(拔尖篇)-2023-2024学年九年级数学下册举一反三系列(苏科版): 这是一份专题7.6 锐角三角函数章末九大题型总结(拔尖篇)-2023-2024学年九年级数学下册举一反三系列(苏科版),文件包含专题76锐角三角函数章末九大题型总结拔尖篇苏科版原卷版docx、专题76锐角三角函数章末九大题型总结拔尖篇苏科版解析版docx等2份试卷配套教学资源,其中试卷共84页, 欢迎下载使用。
人教版九年级下册29.1 投影优秀课堂检测: 这是一份人教版九年级下册29.1 投影优秀课堂检测,文件包含专题293投影与视图章末拔尖卷人教版原卷版docx、专题293投影与视图章末拔尖卷人教版解析版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
初中数学人教版九年级下册第二十八章 锐角三角函数28.1 锐角三角函数优秀课时训练: 这是一份初中数学人教版九年级下册第二十八章 锐角三角函数28.1 锐角三角函数优秀课时训练,文件包含专题285锐角三角函数章末八大题型总结培优篇人教版原卷版docx、专题285锐角三角函数章末八大题型总结培优篇人教版解析版docx等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。