终身会员
搜索
    上传资料 赚现金
    数学高中必修第一册《4.2 指数函数》教学设计-统编人教A版
    立即下载
    加入资料篮
    数学高中必修第一册《4.2 指数函数》教学设计-统编人教A版01
    数学高中必修第一册《4.2 指数函数》教学设计-统编人教A版02
    数学高中必修第一册《4.2 指数函数》教学设计-统编人教A版03
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教A版 (2019)必修 第一册4.2 指数函数教学设计

    展开
    这是一份人教A版 (2019)必修 第一册4.2 指数函数教学设计,共23页。

    本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.2.1节《指数函数的概念》。从内容上看它是学生学习了一次函数、二次函数、反比例函数,以及函数性质基础上,通过实际问题的探究,建立的第四个函数模型。其研究和学习过程,与先前的研究过程类似。先由实际问题探究,建立指数函数的模型和概念,再画函数图像,然后借助函数图像讨论函数的性质,最后应用建立的指数函数模型解决问题。体现了研究函数的一般方法,让学生充分感受,数学建模、直观想象、及由特殊到一般的思想方法。
    重点:理解指数函数的概念与意义,掌握指数函数的定义域、值域的求法.
    难点:理解指数函数增长变化迅速的特点;
    多媒体
    课程目标
    学科素养
    1.理解指数函数的概念与意义,掌握指数函数的定义域、值域的求法.(重点)
    2.理解指数函数增长变化迅速的特点(难点)
    3.培养勇于探索的精神,体会由特殊到一般的研究方法,发展数学核心素养。
    a.数学抽象:指数函数的概念;
    b.逻辑推理:指数函数的底数特点;
    c.数学运算:待定系数法求指数函数解析式;
    d.直观想象:指数函数图像;
    e.数学建模:在实际问题中建立指数函数模型;
    教学过程
    设计意图
    核心教学素养目标
    (一)、创设问题情境
    对于幂 ax(a>0 ,我们已经把指数 x的范围拓展到了实数.上一章学习了函数的概念和基本性质,通过对幂函数的研究,进一步了解了研究一类函数的过程和方法.下面继续研究其他类型的基本初等函数.
    (二)、探索新知
    问题1 随着中国经济高速增长,人民生活水平不断提高,旅游成了越来越多家庭的重要生活方式.由于旅游人数不断增加,A,B两地景区自2011年起采取了不同的应对措施,A地提高了景区门票价格,而B地则取消了景区门票.下表给出了A,B两地景区2011年至2015年的游客人次以及逐年增加量.
    比较两地景区游客人次的变化情况,你发现了怎样的变化规律?为了有利于观察规律,根据表,分别画出A,B两地景区采取不同措施后的15年游客人次的图
    观察图象和表格,可以发现,A地景区的游客人次近似于直线上升(线性增长),年增加量大致相等(约为10万次);B地景区的游客人次则是非线性增长,年增加量越来越大,但从图象和年增加量都难以看出变化规律.
    我们知道,年增加量是对相邻两年的游客人次做减法得到的.能否通过对B地景区每年的游客人次做其他运算发现游客人次的变化规律呢?请你试一试.
    从2002年起,将B地景区每年的游客人次除以上一年的游客人次,可以得到

    2002年游客人次2001年游客人次=309278≈1.11,2003年游客人次2002年游客人次=344309≈1.11⋅⋅⋅⋅⋅⋅2015年游客人次2014年游客人次=12441118≈1.11
    做减法可以得到游客人次的年增加量,做除法可以得到游客人次的年增长率.增加量、增长率是刻画事物变化规律的两个很重要的量.
    结果表明,B 地景区的游客人次的年增长率都约为1.11-1=0.11,是一个常数
    像这样,增长率为常数的变化方式,我们称为指数增长.因此,B地景区的游客人次近似于指数增长.显然,从2001年开始,B地景区游客人次的变化规律可以近似描述为:
    1年后,游客人次是2001年的1.111倍;
    2年后,游客人次是2001年的1.112倍;
    3年后,游客人次是2001年的1.113倍;
    ……
    x年后,游客人次是2001年的1.11x倍.
    如果设经过x年后的游客人次为2001年的y倍,那么
    y= 1.11x (x∈[0,+∞)). ①
    这是一个函数,其中指数x是自变量.
    问题2 当生物死亡后,它机体内原有的碳14含量会按确定的比率衰减(称为衰减率),大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.按照上述变化规律,生物体内碳14含量与死亡年数之间有怎样的关系?
    设死亡生物体内碳14含量的年衰减率为狆,如果把刚死亡的生物体内碳14含量看成1个单位,那么;
    死亡1年后,生物体内碳14含量为(1-p)1;
    死亡2年后,生物体内碳14含量为(1-p)2 ;
    死亡3年后,生物体内碳14含量为(1-p)3 ;……
    死亡5730年后,生物体内碳14含量为(1-p)5730 .
    根据已知条件, (1-p)5730=12,从而1-p=(12)15730,所以p=1-(12)15730.
    设生物死亡年数为x,死亡生物体内碳14含量为y,那么y=(1-p)x ,
    即y=((12)15730)x, (x∈[0,+∞)). 这也是一个函数,指数x是自变量.死亡生物体内碳14含量每年都以1-(12)15730减率衰减.像这样,衰减率为常数的变化方式,我们称为指数衰减.因此,死亡生物体内碳14含量呈指数衰减.
    如果用字母a代替上述①②两式中的底数1.11和(12)15730
    ,那么函数y= 1.11x 和y=((12)15730)x
    可以表示为y=ax的形式,
    指数函数的概念
    一般地,函数y=ax(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是___.
    思考:指数函数定义中为什么规定a大于0且不等于1?
    1.思考辨析
    (1)y=x2是指数函数.( )
    (2)函数y=2-x不是指数函数.( )
    (3)指数函数的图象一定在x轴的上方.( )
    [答案] (1)× (2)× (3)√
    (三)典例解析
    例1.已知指数函数设f(x)=ax(a>0, 且a≠1),且f(3)=π
    求f(0),f(1),f(-3)的值;
    分析:要求f(0),f(1),f(-3)的值,应先求出f(x)=ax的解析式即先求出a的值;
    解:因为 f(x)=ax ,且 f(3)=π,则a3 = π,解得 a =π13 ,
    于是f(x)=πx3,所以f(0)=π0=1,f(1)=π13=3π,f(-3)=π-1=1π
    跟踪训练1:已知函数f(x)为指数函数,且f-32=39,
    则f(-2)=________.
    解析:设f(x)=ax(a>0且a≠1),由f eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(3,2)))=eq \f(\r(3),9)得aeq \s\up12(-eq \f(3,2))=eq \f(\r(3),9),
    所以a=3,又f(-2)=a-2,所以f(-2)=3-2=eq \f(1,9).
    [规律方法]
    1.在指数函数定义的表达式中,要牢牢抓住三点:
    (1)底数是大于0且不等于1的常数;
    (2)指数函数的自变量必须位于指数的位置上;
    (3)ax的系数必须为1.
    2.求指数函数的解析式常用待定系数法
    例2(1)在问题1中,如果平均每位游客出游一次可给当地带来1000元门票之外的收入,A地景区的门票价格为150元,比较这15年间A,B两地旅游收入变化情况.
    解:(1)设经过x年,游客给A,B两地带来的收入分别为f(x)和g(x),则f(x)=1150×(10x+600),g(x)=1000×278×1.11x.
    利用计算工具可得,
    当x=0时,f(0)-g(0)=412000.
    当x≈10.22时,f(10.22)≈g(10.22).
    结合图可知:当x<10.22时,f(x)>g(x),
    当x>10.22时,f(x)<g(x).
    当x=14时,f(14)-g(14)≈347303.
    这说明,在2001年,游客给A地带来的收入比B地多412000万元;随后10年,虽然f(x)>g(x),但g(x)的增长速度大于f(x);根据上述数据,并考虑到实际情况,在2011年2月某个时刻就有f(x)=g(x),
    这时游客给A地带来的收入和B地差不多;此后,f(x)<g(x),游客给B地带来的收入超过了A地;由于g(x)增长得越来越快,在2015年,B地的收入已经比A地多347303万元了.
    开门见山,通过对指数幂运算及函数概念和性质学习的铺垫,提出研究课题:指数函数。培养和发展数学抽象和数学建模的核心素养。
    探究问题:
    探究1.通过景区门票价格制定与参观景区人数,两个变量函数关系的建立,体会数学源于生活,发展学生数学抽象、数学建模和数学运算核心素养;
    通过典例问题的分析,让学生体验实际问题分析方法,及指数函数变化特点。培养分析问题与解决问题的能力;
    探究2.通过生物体死亡时间与体内碳14含量,函数关系的建立,体会指数函数应用的广泛性,并建立指数函数的概念。体会由特殊到一般的研究方法,发展学生数学抽象、数学建模和数学运算核心素养;
    通过典例分析,进一步熟悉指数函数的概念,及认识到指数函数变化迅速的特点;
    三、当堂达标
    1.下列函数一定是指数函数的是( )
    A.y=2x+1 B.y=x3 C.y=3·2x D.y=3-x
    【答案】D [由指数函数的定义可知D正确.]
    2.下列图象中,有可能表示指数函数的是( ).
    【答案】C [由指数函数的增长速度及定义,可知C正确.]
    3.已知函数f(x)=(2a-1)x是指数函数,则实数a的取值范围是________.
    【答案】eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),1))∪(1,+∞) [由题意可知eq \b\lc\{\rc\ (\a\vs4\al\c1(2a-1>0,,2a-1≠1,))解得a>eq \f(1,2),且a≠1,
    所以实数a的取值范围是eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),1))∪(1,+∞).]
    4.若函数f(x)是指数函数,且f(2)=2,则f(x)=________.
    【答案】eq \r(2)x [设f(x)=ax(a>0且a≠1),则f(2)=a2=2,
    ∴a=eq \r(2)(a=-eq \r(2)舍去),∴f(x)=eq \r(2)x.]
    通过练习巩固本节所学知识,巩固指数函数的概念,及了解指数函数变化特点,增强学生的数学抽象和数学直观和数学运算的素养。
    四、小结
    1、指数函数概念
    函数y = ax(a0,且a 1)叫做指数函数,其中x是自变量 .函数的定义域是R .
    五、作业
    1. 课时练 2. 预习下节课内容
    学生根据课堂学习,自主总结知识要点,及运用的思想方法。注意总结自己在学习中的易错点;
    相关教案

    人教A版 (2019)必修 第一册1.1 集合的概念教案: 这是一份人教A版 (2019)必修 第一册1.1 集合的概念教案,共10页。教案主要包含了知识归纳,典例分析,课堂小结,板书设计等内容,欢迎下载使用。

    高中数学人教A版 (2019)必修 第一册第三章 函数的概念与性质3.4 函数的应用(一)教学设计: 这是一份高中数学人教A版 (2019)必修 第一册第三章 函数的概念与性质3.4 函数的应用(一)教学设计,共23页。教案主要包含了探索新知,达标检测,小结,作业等内容,欢迎下载使用。

    数学必修 第一册1.4 充分条件与必要条件教案: 这是一份数学必修 第一册1.4 充分条件与必要条件教案,共23页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map