【单元检测】湘教版(2019)高中数学 必修第二册 第五章 概率 单元测试卷(Word版含解析)
展开第五章 概率 单元测试卷
学校:___________姓名:___________班级:___________考号:___________
一、选择题(共32分)
1、(4分)从某高中2021名学生中选取50名学生参加数学竞赛,若采用以下方法选取:先用简单随机抽样方法从2021名学生中剔除21名,再从余下的2000名学生中随机抽取50名.则其中学生丙被选取和被剔除的概率分别是( )
A. , B. , C. , D. ,
2、(4分)从长度为2,4,6,8,9的5条线段中任取3条,则这3条线段能构成一个三角形的概率为( )
A. B. C. D.
3、(4分)为了贯彻落实《中共中央国务院全面加强新时代大中小学劳动教育的意见》的文件精神,某学校结合自身实际,推出了《植物栽培》《手工编织》《实用木工》《实用电工》《烹饪技术》五门校本劳动选修课程,要求每个学生从中任选三门进行学习,学生经考核合格后方能获得该学校荣誉毕业证,则甲、乙两人的选课中仅有一门课程相同的概率为( )
4、(4分)为了援助湖北抗击疫情,全国各地的白衣天使走上战场的第一线,他们分别乘坐6架我国自主生产的“运20”大型运输机,编号分别为1,2,3,4,5,6,同时到达武汉天河飞机场,每五分钟降落一架,其中1号与6号相邻降落的概率为( )
A. B. C. D.
5、(4分)对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设{两次都击中飞机}, {两次都没击中飞机}, {恰有一枚炮弹击中飞机}, {至少有一枚炮弹击中飞机},下列关系不正确的是( )
A. B. C. D.
6、(4分)一只猴子任意敲击电脑键盘上的0到9这十个数字键,则它敲击两次(每次只敲击一个数字键)得到的两个数字恰好都是3的正整数倍的概率为( )
A. B. C. D.
7、(4分)若某公司从五位大学毕业生甲,乙,丙,丁,戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )
A. B. C. D.
8、(4分)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( )
A.0.3 B.0.4 C.0.6 D.0.7
二、多项选择题(共24分)
9、(6分)产品中有正品4件,次品3件,从中任取2件:
下列四组事件中,互为互斥事件的是( )
①恰有一件次品和恰有2件次品;
②至少有1件次品和全都是次品;
③至少有1件正品和至少有一件次品;
④至少有一件次品和全是正品.
A.① B.② C.③ D.④
10、(6分)抛掷一颗骰子,观察骰子出现的点数,若“出现2点”已经发生,则下列不是必然事件的是( )
A.“出现奇数点” B.“出现偶数点”
C.“点数大于3” D.“点数是3的倍数”
11、(6分)下列各对事件中,不是相互独立事件的有( )
A.运动员甲射击一次,“射中9环”与“射中8环”
B.甲、乙两运动员各射击一次,“甲射中10环”与“乙射中9环”
C.甲、乙两运动员各射击一次,“甲、乙都射中目标”与“甲、乙都没有射中目标”
D.甲、乙两运动员各射击一次,“至少有1人射中目标”与“甲射中目标但乙未射中目标”
12、(6分)下列结论正确的是( )
A.若A,B互为对立事件,,则
B.若事件A,B,C两两互斥,则事件A与互斥
C.若事件A与B对立,则
D.若事件A与B互斥,则它们的对立事件也互斥
三、填空题(共16分)
13、(4分)设A,B,C为三个随机事件,若A与B互斥,B与C对立,且,,则_________.
14、(4分)已知某线路公交车从6:30首发,每5分钟一班,甲、乙两同学都从起点站坐车去学校,若甲每天到起点站的时间是在6:30--7:00任意时刻随机到达,乙每天到起点站的时间是在6:45-7:15任意时刻随机到达,那么甲、乙两人搭乘同一辆公交车的概率是__________
15、(4分)某学校团委在2021年春节前夕举办教师“学习强国”知识答题赛,其中高一年级的甲、乙两名教师组队参加答题赛,比赛共分两轮,每轮比赛甲、乙两人各答一题.已知甲答对每个题的概率为,乙答对每个题的概率为.假定甲、乙两人答题正确与否互不影响,则比赛结束时,甲、乙两人共答对三个题的概率为____________.
16、(4分)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是_________.
四、解答题(共28分)
17、(14分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间,需求量为300瓶;如果最高气温低于20,需求量为200瓶。为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温 | ||||||
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率.
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.
18、(14分)一小袋中有3个红色、3个白色的乒乓球(其体积、质地完全相同),从袋中随机摸出3个球.
(1)求摸出的3个球都为白球的概率是多少?
(2)求摸出的3个球为2个红球、1个白球的概率是多少?
参考答案
1、答案:B
解析:由已知丙被剔除的概率是,那么丙不被剔除的概率是,只有在丙不被剔除的情况下,丙才可能被抽取,因此概率为.故选:B.
2、答案:B
解析:从5条线段中任取3条,共有种不同的取法,
其中能构成一个三角形的有:
,共有5种,
所以这3条线段能构成一个三角形的概率为
故本题的正确答案为B
3、答案:C
解析:甲、乙总的选课方法有:种,
甲、乙两人的选课中仅有一门课程相同的选法有:种,
(先选一门相同的课程有种选法,若要保证仅有一门课程相同只需要其中一人从剩余门课程中选取2门,另一人选取剩余的2门课程即可,故有种选法)
所以概率为,故选C.
4、答案:D
解析:6架飞机的降落顺序有种,而1号与6号相邻降落的顺序有种,所以所求事件的概率.故选D.
5、答案:D
解析:“恰有一枚炮弹击中飞机”指第一枚击中第二枚没中或第一枚没中第二枚击中,“至少有一枚炮弹击中”包含两种情况:一种是恰有一枚炮弹击中,一种是两枚炮弹都击中, ∴ .故选 D.
6、答案:A
解析:
7、答案:D
解析:
8、答案:B
解析:
9、答案:AD
解析:
10、答案:ACD
解析:
11、答案:ACD
解析:在A中,甲射击一次,“射中9环”与“射中8环”两个事件不可能同时发生,二者是互斥事件,不独立;在B中,甲、乙各射击一次,“甲射中10环”发生与否对“乙射中9环”的概率没有影响,二者是相互独立事件;在C中,甲、乙各射击一次,“甲、乙都射中目标”与“甲、乙都没有射中目标”不可能同时发生,二者是互斥事件,不独立;在D中,记“至少有1人射中目标”为事件A,“甲射中目标但乙未射中目标”为事件B,则,因此当时,,故不独立.故选ACD.
12、答案:ABC
解析:若A,B互为对立事件,,则A为必然事件,故B为不可能事件,则,故A正确;
若事件A,B,C两两互斥,则事件A,B,C不能同时发生,则事件A与也本可能同时发生,则事件A与互斥,故B正确;
若事件A与B对立,则,故C正确;
若事件A,B互斥但不对立,则它们的对立事件不互斥,故D错误.故选ABC.
13、答案:2
解析:
14、答案:
解析:
解析:由题意知:甲、乙两人共答对三个题的基本事件有{甲答对2个乙答对1个,甲答对1个乙答对2个},而甲答对每个题的概率为,乙答对每个题的概率为.
∴甲答对2个乙答对1个的概率为,甲答对1个乙答对2个的概率为,∴甲、乙两人共答对三个题的概率为.故答案为:.
16、答案:
解析:方法一:从3名男同学和2名女同学中任选2名同学参加志愿者服务,共有种情况.
若选出的2名学生恰有1名女生,有种情况,
若选出的2名学生都是女生,有种情况,
所以所求的概率为.
方法二:.
17、答案:(1)概率的估计值为0.6
(2)概率的估计值为0.8
解析:(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表中数据可知,最高气温低于25的频率为.
所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.
(2)当这种酸奶一天的进货量为450瓶时,若最高气温低于20,
则;
若最高气温位于区间,则;
若最高气温不低于25,测,所以,利润Y的所有可能值为-100,300,900.
Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为.
因此Y大于零的90概率的估计值为0.8.
18、答案:(1)
(2)
解析:(1)把3个红色乒乓球标记为A,B,C,3个白色乒乓球标记为1,2,3.从6个球中随机摸出3个球的样本点为ABC,AB1,AB2,AB3,AC1,AC2,AC3,A12,A13,A23,BC1,BC2,BC3,B12,B13,B23,C12,C13,C23,123,共20个.
记事件{摸出的3个球为白球},事件E包含的样本点有1个,即123,则.
(2)记事件{摸出的3个球为2个红球、1个白球},事件F包含的样本点有9个,则.