所属成套资源:新教材2023年高中数学新人教A版选择性必修第二册全册测试题(23份)
- 新教材2023年高中数学第五章一元函数的导数及其应用5.2导数的运算5.2.2导数的四则运算法则5.2.3简单复合函数的导数素养作业新人教A版选择性必修第二册 试卷 0 次下载
- 新教材2023年高中数学第五章一元函数的导数及其应用5.3导数在研究函数中的应用5.3.1函数的单调性素养作业新人教A版选择性必修第二册 试卷 0 次下载
- 新教材2023年高中数学第五章一元函数的导数及其应用5.3导数在研究函数中的应用5.3.2函数的极值与最大小值第2课时函数的最大小值素养作业新人教A版选择性必修第二册 试卷 0 次下载
- 新教材2023年高中数学第五章一元函数的导数及其应用5.3导数在研究函数中的应用5.3.3利用导数解决与函数有关的问题素养作业新人教A版选择性必修第二册 试卷 0 次下载
- 新教材2023年高中数学第五章一元函数的导数及其应用检测题新人教A版选择性必修第二册 试卷 0 次下载
数学人教A版 (2019)5.3 导数在研究函数中的应用第1课时练习题
展开
这是一份数学人教A版 (2019)5.3 导数在研究函数中的应用第1课时练习题,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
第五章 5.3 5.3.2 第1课时
A组·素养自测
一、选择题
1.已知函数y=f(x)在定义域内可导,则函数y=f(x)在某点处的导数值为0是函数y=f(x)在这点处取得极值的( B )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.非充分非必要条件
[解析] 根据导数的性质可知,若函数y=f(x)在这点处取得极值,则f′(x)=0,即必要性成立;反之不一定成立,如函数f(x)=x3在R上是增函数,f′(x)=3x2,则f′(0)=0,但在x=0处函数不是极值,即充分性不成立.
故函数y=f(x)在某点处的导数值为0是函数y=f(x)在这点处取得极值的必要不充分条件,故选B.
2.函数f(x)的定义域为R,导函数f′(x)的图象如图所示,则函数f(x)( C )
A.无极大值点,有四个极小值点
B.有三个极大值点,两个极小值点
C.有两个极大值点,两个极小值点
D.有四个极大值点,无极小值点
[解析] f′(x)的符号由正变负,则f(x0)是极大值,f′(x)的符号由负变正,则f(x0)是极小值.由图象易知有两个极大值点,两个极小值点.
3.已知函数y=f(x),x∈R有唯一的极值,且x=1是f(x)的极小值点,则( C )
A.当x∈(-∞,1)时,f ′(x)≥0;当x∈(1,+∞)时,f ′(x)≤0
B.当x∈(-∞,1)时,f ′(x)≥0;当x∈(1,+∞)时,f ′(x)≥0
C.当x∈(-∞,1)时,f ′(x)≤0;当x∈(1,+∞)时,f ′(x)≥0
D.当x∈(-∞,1)时,f ′(x)≤0;当x∈(1,+∞)时,f ′(x)≤0
[解析] 由极小值点的定义,知极小值点左右两侧的导函数是左负右正,又函数f(x),x∈R有唯一的极值,故当x∈(-∞,1)时,f ′(x)≤0;当x∈(1,+∞)时,f ′(x)≥0.
4.已知a为函数f(x)=x3-12x的极小值点,则a=( D )
A.-4 B.-2
C.4 D.2
[解析] 由题意得f ′(x)=3x2-12,由f ′(x)=0得x=±2,当x∈(-∞,-2)时,f ′(x)>0,函数f(x)单调递增,当x∈(-2,2)时,f ′(x)0,函数f(x)单调递增,所以a=2.
5.已知函数f(x)=x(x-c)2,在x=2处取得极大值,则实数c的值是( D )
A. B.2
C.2或6 D.6
[解析] 函数f(x)=x(x-c)2的导数为f ′(x)=(x-c)2+2x(x-c)=(x-c)(3x-c),
由f(x)在x=2处有极大值,即有f ′(2)=0,即(c-2)(c-6)=0,
解得c=2或6, 若c=2时,f ′(x)=0,可得x=2或,
由f(x)在x=2处导数左负右正,取得极小值,
若c=6,f ′(x)=0 ,可得x=6或2 ,
由f(x)在x=2处导数左正右负,取得极大值.
综上可得c=6.
6.函数y=x3-2ax+a在(0,1)内有极小值,则实数a的取值范围是( D )
A.(0,3) B.(-∞,3)
C.(0,+∞) D.
[解析] y′=3x2-2a,因为函数在(0,1)内有极小值,
所以y′=3x2-2a=0在(0,1)内必有实数解,
记f(x)=3x2-2a,如图
所以解得0
相关试卷
这是一份数学人教A版 (2019)5.3 导数在研究函数中的应用第2课时课时作业,共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份人教A版 (2019)选择性必修 第二册第五章 一元函数的导数及其应用5.3 导数在研究函数中的应用第1课时当堂达标检测题,共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份高中数学人教A版 (2019)选择性必修 第二册5.3 导数在研究函数中的应用第1课时课时作业,共7页。