所属成套资源:(新高考)高考数学一轮复习过关练 (含解析)
(新高考)高考数学一轮复习过关练考点07 导数的运算及几何意义(含解析)
展开这是一份(新高考)高考数学一轮复习过关练考点07 导数的运算及几何意义(含解析),共16页。
考点07 导数的运算及几何意义
①了解导数的概念,体会导数的思想及其内涵;通过函数图像直观地理解导数的几何意义;
②理解导数额概念,理解基本初等函数的导数公式;理解导数的四则运算法则,能利用导数公式和求导法则求简单的导数;
导数的运算与导数的几何意义重点体现在求函数的切线方程,在最近几年高考中经常考查,不仅体现在填空题中也体现在大题大题的第一问中。多数都是以送分题的形式出现。
在高考复习中要注意以下几点:
1、解决在点处的切线问题要抓住两点:(1)切点即在曲线上也在曲线的切线上。(2)切线l的斜率
2、求函数的导数是掌握基本初等函数的求导公式以及运算法则,在求导的过程中,要仔细分析函数解析式的结构特点,紧扣求导法则把函数分解或者综合合理变形,正确求导。
3、在解题过程中要充分利用好曲线的切线,挖掘切线的价值,在有些问题中,可利用切线求两个曲线上的点的之间距离或求参的范围。
1、【2020年全国1卷】.函数的图像在点处的切线方程为( )
A. B.
C. D.
【答案】B
【解析】,,,,
因此,所求切线的方程为,即.
故选:B.
2、【2020年全国3卷】.若直线l与曲线y=和x2+y2=都相切,则l的方程为( )
A. y=2x+1 B. y=2x+ C. y=x+1 D. y=x+
【答案】D
【解析】】设直线在曲线上的切点为,则,
函数的导数为,则直线的斜率,
设直线的方程为,即,
由于直线与圆相切,则,
两边平方并整理得,解得,(舍),
则直线的方程为,即.
故选:D.
3、【2019年高考全国Ⅲ卷理数】已知曲线在点(1,ae)处的切线方程为y=2x+b,则
A. B.a=e,b=1
C. D.,
【答案】D
【解析】∵
∴切线的斜率,,
将代入,得.
故选D.
【名师点睛】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a,b的等式,从而求解,属于常考题型.
4、【2018年高考全国Ⅰ卷理数】设函数.若为奇函数,则曲线在点处的切线方程为
A. B.
C. D.
【答案】D
【解析】因为函数是奇函数,所以,解得,所以,,
所以,
所以曲线在点处的切线方程为,化简可得.
故选D.
5、(2019年江苏卷).在平面直角坐标系中,P是曲线上的一个动点,则点P到直线x+y=0的距离的最小值是_____.
【答案】4.
【解析】当直线平移到与曲线相切位置时,切点Q即为点P到直线的距离最小.
由,得,,
即切点,
则切点Q到直线的距离为,
故答案为:.
6、(2019年江苏卷)..在平面直角坐标系中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(-e,-1)(e为自然对数的底数),则点A的坐标是____.
【答案】.
【解析】设点,则.又,
当时,,
点A在曲线上的切线为,
即,
代入点,得,
即,
考查函数,当时,,当时,,
且,当时,单调递增,
注意到,故存在唯一的实数根,此时,
故点的坐标为.
7、【2020年山东卷】已知函数.
(1)当时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;
【答案】(1)(2)
【解析】(1),,.
,∴切点坐标为(1,1+e),
∴函数f(x)在点(1,f(1)处的切线方程为,即,
切线与坐标轴交点坐标分别为,
∴所求三角形面积为;
8、【2020年天津卷】.已知函数,为的导函数.
(Ⅰ)当时,
(i)求曲线在点处的切线方程;
【解析】(Ⅰ) (i) 当k=6时,,.可得,,
所以曲线在点处的切线方程为,即.
所以,函数g(x)的单调递减区间为(0,1),单调递增区间为(1,+∞);
g(x)的极小值为g(1)=1,无极大值.
9、【2019年高考全国Ⅱ卷理数】已知函数.
(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;
(2)设x0是f(x)的一个零点,证明曲线y=lnx在点A(x0,lnx0)处的切线也是曲线的切线.
【解析】(1)f(x)的定义域为(0,1)(1,+∞).
因为,所以在(0,1),(1,+∞)单调递增.
因为f(e)=,,所以f(x)在(1,+∞)有唯一零点x1,即f(x1)=0.又,,故f(x)在(0,1)有唯一零点.
综上,f(x)有且仅有两个零点.
(2)因为,故点B(–lnx0,)在曲线y=ex上.
由题设知,即,故直线AB的斜率.
曲线y=ex在点处切线的斜率是,曲线在点处切线的斜率也是,
所以曲线在点处的切线也是曲线y=ex的切线.
10、【2020年北京卷】已知函数.
(Ⅰ)求曲线的斜率等于的切线方程;
(Ⅱ)设曲线在点处的切线与坐标轴围成的三角形的面积为,求的最小值.
【答案】(Ⅰ),(Ⅱ).
【解析】(Ⅰ)因为,所以,
设切点为,则,即,所以切点为,
由点斜式可得切线方程:,即.
(Ⅱ)显然,
因为在点处的切线方程为:,
令,得,令,得,
所以,
不妨设时,结果一样,
则,
所以
,
由,得,由,得,
所以在上递减,在上递增,
所以时,取得极小值,
也是最小值为.
11、【2019年高考北京理数】已知函数.
(Ⅰ)求曲线的斜率为1的切线方程;
(Ⅱ)当时,求证:;
(Ⅲ)设,记在区间上的最大值为M(a).当M(a)最小时,求a的值.
【答案】(Ⅰ)与;(Ⅱ)见解析;(Ⅲ).
【解析】(Ⅰ)由得.
令,即,得或.
又,,
所以曲线的斜率为1的切线方程是与,
即与.
(Ⅱ)令.
由得.
令得或.
的情况如下:
|
|
|
| ||||
所以的最小值为,最大值为.
故,即.
(Ⅲ)由(Ⅱ)知,
当时,;
当时,;
当时,.
综上,当最小时,.
题型一 导数的几何意义
1、(2010届北京西城区第4中学期中)已知曲线在点处的切线方程为,则( )
A. B. C. D.
【答案】D
【解析】
,
将代入得,故选D.
2、(北京市通州区2019-2020学年高三上学期期中数学试题)直线经过点,且与直线平行,如果直线与曲线相切,那么等于( )
A. B. C. D.
【答案】A
【解析】直线经过点,且与直线平行,则直线方程为:
直线与曲线相切,,切点为 代入直线方程
解得:
故选:A
3、(2020届江苏省南通市海门中学高三上学期10月检测)曲线在处的切线方程为,则实数______.
【答案】1;
【解析】因为,
所以,所以,,
故曲线在处的切线过且斜率,故切线方程为
所以
故答案为:
4、(江苏省南通市西亭高级中学2019-2020学年高三下学期学情调研)若曲线在处的切线斜率为-1,则___________.
【答案】
【解析】,
.
故答案为:-2.
5、(2020届山东省滨州市高三上期末)曲线在点处的切线的方程为__________.
【答案】
【解析】
6、(2020届山东省九校高三上学期联考)直线与曲线相切,则__________.
【答案】
【解析】函数的导函数,
设切点坐标,则,解得:.
故答案为:
.7、(江苏省如皋市2019-2020学年高三上学期10月调研)已知,设函数的图象在点(1,)处的切线为l,则l在y轴上的截距为________ .
【答案】1
【解析】函数f(x)=ax−lnx,可得,切线的斜率为:,
切点坐标(1,a),切线方程l为:y−a=(a−1)(x−1),
l在y轴上的截距为:a+(a−1)(−1)=1.
故答案为1.
8、(江苏省南通市2019-2020学年高三上学期期初)给出下列三个函数:①;②;③,则直线()不能作为函数_______的图象的切线(填写所有符合条件的函数的序号).
【答案】①
【解析】直线的斜率为k=,
对于①,求导得:,对于任意x≠0,=无解,所以,直线不能作为切线;
对于②,求导得:有解,可得满足题意;
对于③,求导得:有解,可得满足题意;
故答案为:①
9、(2020届浙江省温丽联盟高三第一次联考)已知函数.
(Ⅰ)若,求曲线在处的切线方程;
【解析】
(Ⅰ)解:,
当时,,,
所以曲线在点处的切线方程为,即;
10、(2020届山东省潍坊市高三上期中)已知函数.
(1)当时,求曲线在点处的切线方程;
(2)若函数处有极小值,求函数在区间上的最大值.
【答案】(1);(2).
【解析】(1)当时,,,
所以,又,所以曲线在点处切线方程为,即.
(2)因为,
因为函数处有极小值,所以,
所以
由,得或,
当或时,,
当时,,
所以在,上是增函数,在上是减函数,
因为,,
所以的最大值为.
题型二 函数图像的切线的综合问题
1、(2020届山东省潍坊市高三上学期统考)当直线和曲线E:交于三点时,曲线E在点A,点C处的切线总是平行的,则过点可作曲线E的切线的条数为( )
A.0 B.1 C.2 D.3
【答案】C
【解析】直线过定点
由题意可知:定点是曲线的对称中心,
,解得,所以曲线,
f′(x)= ,设切点M(x0,y0),
则M纵坐标y0=,又f′(x0)=,
∴切线的方程为:
又直线过定点
,
得﹣-2=0,
,
即
解得:
故可做两条切线
故选C
2、(北京市第171中学2019-2020学年高三10月月考数学试题)已知函数,,其中.若的图象在点处的切线与的图象在点处的切线重合,则a的取值范围为()
A. B.
C. D.
【答案】A
【解析】∵,
∴,,
函数在点处的切线方程为:,
函数在点处的切线方程为:,
两直线重合的充要条件是①,②,
由①及得,
故,
令,则,且,
设,
,
当时,恒成立,即单调递减,
,时,,
即a的取值范围为,故选A.
3、(2020届江苏省七市第二次调研考试)在平面直角坐标系中,曲线在点处的切线与x轴相交于点A,其中e为自然对数的底数.若点,的面积为3,则的值是______.
【答案】
【解析】由题,,切线斜率,则切线方程为,令,解得,又的面积为3,,解得.
故答案为:
4、(2020届江苏省南通市如皋中学高三下学期3月线上模拟)已知P为指数函数图象上一点,Q为直线上一点,则线段PQ长度的最小值是_______
【答案】
【解析】设图象上斜率为1的切线的切点是,由,,,,即.到直线的距离是.
故答案为:.
5、(2019苏锡常镇调研)已知点P在曲线C:上,曲线C在点P处的切线为l,过点P且与直线l垂直的直线与曲线C的另一交点为Q,O为坐标原点,若OP⊥OQ,则点P的纵坐标为 .
【答案】.
【解析】设,因为,所以切线l的斜率,且,则直线,即
令,消得:,设,则,即,又因为点在曲线上,所以,故
因为,所以,即,化简得,则,所以点的纵坐标为
6、(2020届山东省潍坊市高三上期末)已知函数.
(1)讨论函数的单调性;
(2)当时,若曲线与曲线存在唯一的公切线,求实数的值;
【解析】(1),
当时,恒成立,在上单调递减,
当时,由,解得,
由于时,导函数单调递增,
故,单调递减,
单调递增.
综上,当时在上单调递减;
当时, 在上单调递减,在上单调递增. .
(2)曲线与曲线存在唯一公切线,设该公切线与分别切于点,显然.
由于,
所以,
,
由于,故,且
因此,
此时,
设
问题等价于直线与曲线在时有且只有一个公共点,
又,令,解得,
则在上单调递增,上单调递减,
而,当时,
所以的值域为.
故.
7、(2020届山东省枣庄、滕州市高三上期末)已知函数,曲线在点处的切线在y轴上的截距为.
(1)求a;
【解析】(1)对求导,得.
因此.又因为,
所以曲线在点处的切线方程为
,
即.
由题意,.
显然,适合上式.
令,
求导得,
因此为增函数:故是唯一解.
相关试卷
这是一份高考数学一轮复习检测:第2章第1节 导数的运算、几何意义 含解析,共8页。试卷主要包含了如图,y=f是可导函数,直线l等内容,欢迎下载使用。
这是一份(新高考)高考数学一轮复习过关练考点30 排列、组合(含解析),共13页。
这是一份(新高考)高考数学一轮复习过关练考点23 运用空间向量解决立体几何问题(含解析),共41页。