|试卷下载
终身会员
搜索
    上传资料 赚现金
    2023年中考考前最后一卷:数学(广西卷)(全解全析)
    立即下载
    加入资料篮
    2023年中考考前最后一卷:数学(广西卷)(全解全析)01
    2023年中考考前最后一卷:数学(广西卷)(全解全析)02
    2023年中考考前最后一卷:数学(广西卷)(全解全析)03
    还剩18页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年中考考前最后一卷:数学(广西卷)(全解全析)

    展开
    这是一份2023年中考考前最后一卷:数学(广西卷)(全解全析),共21页。试卷主要包含了下列各数中是无理数的是,如图,,,平分,则为,下列运算正确的是等内容,欢迎下载使用。

    2023年中考考前最后一卷【广西卷】
    数学·全解全析
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    C
    C
    B
    C
    C
    A
    D
    C
    C
    B
    B
    B
    一.选择题(本大题共12小题,每小题3分,共36分。)
    1.下列各数中是无理数的是(    )
    A.0 B. C. D.
    【答案】C
    【分析】理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数;由此即可判定选择项.
    【详解】解:A.0是整数,属于有理数,故此选项不符合题意;
    B.,是有理数,故此选项不符合题意;
    C.是无限不循环小数,属于无理数,符合题意;
    D.,是有理数,故此选项不符合题意;
    故选:C.
    【点睛】本题考查了无理数,解答本题的关键掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有的数;易错点是任何非0实数的0次幂等于1.
    2.国家统计局网站公布,我国2022年全年完成造林面积约为3830000公顷.数据3830000用科学记数法可以表示为(    )
    A. B. C. D.
    【答案】C
    【分析】3830000用科学记数法表示成的形式,其中,,代入可得结果.
    【详解】解:3830000的绝对值大于表示成的形式,
    ∵,,
    ∴3830000表示成,
    故选:C.
    【点睛】本题考查了科学记数法.解题的关键在于确定的值.
    3.如图是一个由个相同的正方体组成的立体图形,它的俯视图是(    )

    A. B. C. D.
    【答案】B
    【分析】根据三视图的特点即可求解.
    【详解】解:选项,是正视图,故错误,不符合题意;
    选项,是俯视图,故正确,符合题意;
    选项,图示不符合题意,故错误,不符合题意;
    选项,第二层的个数不符合题意,故错误,不符合题意;
    故选:.
    【点睛】本题主要考查几何体的三视图,掌握三视图的特点是解题的关键.
    4.如图,,,平分,则为(    )

    A. B. C. D.
    【答案】C
    【分析】根据平行线的性质及角平分线的定义解答即可.
    【详解】解:∵,,
    ∴,
    ∵平分,
    ∴,
    ∴,
    ∵,
    ∴.
    故选:C.
    【点睛】本考查平行线的性质、角平分线的概念.掌握平行线的性质是解题的关键.
    5.某品牌服装店在一段时间内销售女装40件,各种尺码的销量统计如下:
    尺码/cm
    155
    160
    165
    170
    175
    180
    销量/件
    2
    9
    14
    10
    4
    1
    所售40件女装尺码的众数是(    )
    A.180cm B.170cm C.165cm D.160cm
    【答案】C
    【分析】比较各个尺码所销售的件数,找出销售最多的那个尺码,即可求解.
    【详解】解:销售尺码最多,
    众数是.
    故选:C.
    【点睛】本题考查了众数的定义,理解定义是解题的关键.
    6.下列运算正确的是(    )
    A. B. C. D.
    【答案】A
    【分析】根据整式运算法则计算出每个选项的结果,即可得出结论.
    【详解】解:∵,
    故A符合题意;
    ∵,
    故B不符合题意;
    ∵,
    故C不符合题意;
    ∵,
    故D不符合题意,
    故选:A.
    【点睛】本题主要考查了积的乘方,合并同类项,完全平方公式,同底数幂的乘法法则,熟练掌握运算法则是解题的关键.
    7.若关于x的一元二次方程有两个相等的实数根,则m的值是(    )
    A. B. C. D.
    【答案】D
    【分析】先计算根的判别式Δ=b2-4ac的值.有两个相等实数根的一元二次方程就是判别式的值是0,由此建立关于m的方程解答即可.
    【详解】解:∵关于x的方程有两个相等的实数根,
    ∴,
    解得:.
    故选:D.
    【点睛】此题考查一元二次方程根的情况与判别式△的关系:(1)当则方程有两个不相等的实数根;(2)当则方程有两个相等的实数根;(3)当则方程没有实数根.
    8.把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的是(    )
    A. B.
    C. D.
    【答案】C
    【分析】分别解出不等式组中每个不等式,再对比选项中数轴所表示的解的范围.
    【详解】解:,,,;
    对通分得,



    故选:C.
    【点睛】此题考查了一元一次不等式组得解法,解题的关键是熟练掌握不等式性质.
    9.如图,将等腰三角形绕点C顺时针旋转得到,已知,,则的度数为(    ).

    A. B. C. D.
    【答案】C
    【分析】首先根据等腰三角形的性质和三角形内角和定理求出,然后根据旋转的性质得到,最后利用角的和差求解即可.
    【详解】∵,,
    ∴,
    ∵将等腰三角形绕点C顺时针旋转得到,
    ∴,
    ∴.
    故选:C.
    【点睛】本题考查旋转的性质,等腰三角形的性质和三角形内角和定理,熟练掌握旋转的性质是解题的关键.
    10.某种仪器由1个A部件和2个B部件配套构成,每个工人每天可以加工A部件50个或者加工B部件60个,现有工人72名,应怎样安排人力,才能使每天生产的A部件和B部件配套?设安排x个人生产A部件,安排y个人生产B部件.则列出二元一次方程组为(    )
    A. B. C. D.
    【答案】B
    【分析】根据“生产A部件的人数和生产B部件的人数之和是72”,“生产的B部件的数量是A部件的2倍”即可列出二元一次方程组.
    【详解】解:设安排x个人生产A部件,安排y个人生产B部件.
    由题意得.
    故选:B
    【点睛】本题考查了根据题意列二元一次方程组,理解题意,找出题目中的数量关系是解题关键.
    11.如图,在矩形ABCD中,点A的坐标是(-2,1),点C的纵坐标是4,则点B的坐标( )

    A.( ,4) B.(,3) C.() D.( ,3)
    【答案】B
    【分析】过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A作AF∥x轴,交点为F.然后证明△CAF≌△BOE,得到△AOD∽△OBE,即可解答
    【详解】过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A作AF∥x轴,交点为F.

    ∵四边形AOBC是矩形,∴AC∥OB,AC=OB,∴∠CAF=∠BOE.
    ∵在△ACF和△OBE中, ∴△CAF≌△BOE(AAS),∴BE=CF=4-1=3.
    ∵∠AOD+∠BOE=∠BOE+∠OBE=90°,∴∠AOD=∠OBE.
    ∵∠ADO=∠OEB=90°,∴△AOD∽△OBE,∴ ,即 ,
    ∴OE= ,即点B(,3).
    故选B.
    【点睛】此题考查矩形的性质,坐标与图形性质,解题关键在于做辅助线
    12.如图,AB是半⊙O的直径,点C在半⊙O上,AB=5cm,AC=4cm.D是上的一个动点,连接AD,过点C作CE⊥AD于E,连接BE.在点D移动的过程中,BE的最小值为(  )

    A.1 B.﹣2 C.2﹣1 D.3
    【答案】B
    【分析】如图,连接BO′、BC.在点D移动的过程中,点E在以AC为直径的圆上运动,当O′、E、B共线时,BE的值最小,最小值为O′B﹣O′E,利用勾股定理求出BO′即可解决问题.
    【详解】解:如图,连接BO′、BC.

    ∵CE⊥AD,∴∠AEC=90°,
    ∴在点D移动的过程中,点E在以AC为直径的圆上运动,
    ∵AB是直径,∴∠ACB=90°,
    在Rt△ABC中,∵AC=4,AB=5,∴,O′E=2,
    在Rt△BCO′中,,∵O′E+BE≥O′B,
    ∴当O′、E、B共线时,BE的值最小,最小值为O′B﹣O′E=﹣2,
    故选:B.
    【点睛】本题主要考查了勾股定理、点与圆的位置关系等知识,解题的关键是确定点E的运动轨迹是在以AC为直径的圆上运动,属于中考选择题中的压轴题.
    二.填空题(共6小题,每小题2分,共12分)
    13.函数中,则自变量x的取值范围是_____.
    【答案】x-2
    【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不等于0,据此列不等式,即可得解.
    【详解】∵存在函数,
    ∴分式有意义,
    ∴,
    解得,
    故答案为:.
    【点睛】本题考查了函数自变量的取值范围及分式有意义的条件等知识.根据分式有意义得出是解答本题的关键.
    14.小金参加校“阳光少年”评选,其中综合荣誉分占30%,现场演讲分占70%,已知小金这两项成绩分别为80分和90分,则小金的最终成绩为______分.
    【答案】87
    【分析】根据加权平均数的计算方法,综合荣誉分占,现场演讲分占,小金综合荣誉与现场演讲成绩分别为分和分列出算式,再进行计算即可.
    【详解】解:综合荣誉分占,现场演讲分占,小金综合荣誉与现场演讲成绩分别为分和分,
    小金的最终成绩为,
    故答案为87.
    【点睛】本题考查了加权平均数,根据加权平均数的公式列出算式是本题的关键.
    15.如图,是的外接圆,是的直径,若,则的度数是 ________.

    【答案】/15度
    【分析】连接,由圆周角定理得到,即可求出的度数.
    【详解】解:连接,
    是圆的直径,




    故答案为:.

    【点睛】本题考查圆周角定理,三角形的外接圆与外心,直角三角形的性质,关键是掌握圆周角定理.
    16.如图,与位似,位似中心为点O.已知,若的周长等于4,则的周长等于_________.

    【答案】
    【分析】利用相似三角形的性质求解即可.
    【详解】解:∵与位似,点O为位似中心,,
    ∴,
    ∴的周长:的周长,
    ∵的周长为4,
    ∴的周长为,
    故答案为:.
    【点睛】本题考查位似变换,相似三角形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
    17.如图所示,在平面直角坐标系中,等腰直角三角形的顶点、分别在轴、轴的正半轴上,,轴于点,点在函数的图象上,若,则的值为___.

    【答案】
    【分析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=2BD,再证得四边形OADB是矩形,利用AC⊥x轴得到C(1,2),然后根据反比例函数图象上点的坐标特征计算k的值.
    【详解】解:作BD⊥AC于D,如图,

    ∵ABC为等腰直角三角形,
    ∴BD是AC的中线,
    ∴AC=2BD,
    ∵AC⊥x轴,BD⊥AC,∠AOB=90°,
    ∴四边形OADB是矩形,
    ∴BD=OA=1,
    ∴AC=2,
    ∴C(1,2),
    把C(1,2)代入y=得k=1×2=2.
    故答案为:2
    【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y= (k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了等腰直角三角形的性质.
    18.如图,Rt△ABC中,∠C=90°,AC=3,BC=4,点D在AB边上,点E是BC边上一点(不与点B、C重合),且DA=DE,则AD的取值范围是___.

    【答案】
    【分析】首先由中,,,,可求得的长,然后根据题意画出图形,分别从当与相切时与当与相交时,去分析求解即可求得答案.
    【详解】解:中,,,,

    以为圆心,的长为半径画,
    ①如图1,当与相切时,时,

    设,则,,
    ,是公共角,


    即,
    解得:;
    ②如图2,当与相交时,若交点为或,则,

    的取值范围是.
    故答案为:.
    【点睛】此题考查了直线与圆的位置关系、勾股定理以及相似三角形的判定与性质.注意根据题意画出图形,结合图形求解是关键.

    三.解答题(共8小题,共72分)
    19.计算:.
    【答案】0
    【分析】先分别求算术平方根,绝对值,乘方,然后进行加减运算即可.
    【详解】解:原式.
    【点睛】本题考查了算术平方根,绝对值,乘方.解题的关键在于正确的运算.
    20.化简:(a﹣3)(a+3)﹣a(a+1).
    【答案】﹣9﹣a
    【分析】先用平方差公式计算,再用单项式与多项式相乘的运算法则.
    【详解】解:原式=a2﹣9﹣a2﹣a
    =﹣9﹣a.
    【点睛】本题主要考查整式的化简,掌握平方差公式,单项式与多项式相乘的运算法则是解题的关键.
    21.如图,AE∥ BF,AC平分∠BAE,且交BF于点C.

    (1)作∠ABF的平分线交AE于点D(尺规作图,保留痕迹,不写作法);
    (2)根据(1)中作图,连接CD,求证:四边形ABCD是菱形.
    【答案】(1)见解析
    (2)见解析

    【分析】(1)根据尺规作角平分线的方法作图即可;
    (2)根据角平分线的定义和平行线的性质证明∠BAC=∠ACB,∠ADB=∠ABD,再根据三角形的等角对等边证得AD=AB=BC,然后根据平行四边形的判定和菱形的判定证明即可.
    【详解】(1)解:如图,射线BD为所求;

    (2)证明:∵AE∥BF,∴∠DAC=∠ACB.∵AC平分∠BAE,
    ∴∠DAC=∠BAC,∴∠ACB=∠BAC,∴AB=BC.
    同理可证AB=AD,
    ∴AD=BC.又∵AD∥BC,∴四边形ABCD是平行四边形.
    又∵AB=BC,
    ∴四边形ABCD是菱形.
    【点睛】本题考查尺规作图作角平分线、角平分线的定义、平行线的性质、等腰三角形的判定、菱形的判定,熟练掌握相关知识的联系与运用是解答的关键.
    22.某校为提高学生的综合素质,准备开设“泥塑”“绘画”“书法”“街舞”四门校本课程,为了解学生对这四门课程的选择情况(要求每名学生只能选择其中一门课程),学校从七年级学生中随机抽取部分学生进行问卷调查,根据调查结果绘制成如图所示的两幅不完整的统计图.

    请你依据图中信息解答下列问题:
    (1)参加此次问卷调查的学生人数是______人,在扇形统计图中,选择“泥塑”的学生所对应的扇形圆心角的度数是______;
    (2)通过计算将条形统计图补充完整;
    (3)若该校七年级共有名学生,请估计七年级学生中选择“书法”课程的约有多少人?
    【答案】(1),(2)见解析(3)216人
    【分析】根据“街舞”的人数和所占的百分比,求出调查的学生总人数;用选择“泥塑”课程的学生数除以总人数,再乘以即可得出选择“泥塑”的学生所对应的扇形圆心角的度数;
    用总人数减去其它课程的人数,求出“绘画”的人数,从而补全统计图;
    用样本估计总体即可.
    【详解】(1)解:参加此次问卷调查的学生人数是:;
    选择“泥塑”的学生所对应的扇形圆心角的度数是:.
    故答案为:,;
    (2)“绘画”的人数为:人,
    补全条形统计图如图所示.

    (3)名.
    答:七年级学生中选择“书法”课程的约有人.
    【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    23.知识再现:如图1,在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c.
    ∵,
    ∴, ∴

    (1)拓展探究:如图2,在锐角ABC中,∠A,∠B,∠C的对边分别为a,b,c.请探究,,之间的关系,并写出探究过程.
    (2)解决问题:如图3,为测量点A到河对岸点B的距离,选取与点A在河岸同一侧的点C,测得AC=60m,∠A=75°,∠C=60°.请用拓展探究中的结论,求点A到点B的距离.
    【答案】(1),证明见解析(2)米
    【分析】拓展研究:作CD⊥AB于点D,AE⊥BC于点E,根据正弦的定义得AE = csinB,
    AE= bsin∠BCA,CD= asinB,CD = bsin∠BAC,从而得出结论;
    解决问题:由拓展探究知, 代入计算即可.
    【详解】(1)(拓展探究)证明:作CD⊥AB于点D,AC⊥BC于点E.

    在RtΔABE中,,
    同理:,


    ..

    (2)(解答问题)解:在ΔABC中,
    ∴ 解得:
    答:点A到点B的距离为m.
    【点睛】本题主要考查了解直角三角形,对于锐角三角形,利用正弦的定义,得出是解题的关键.
    24.在某市组织的农机推广活动中,甲、乙两人分别操控A、B两种型号的收割机参加水稻收割比赛.已知乙每小时收割的亩数比甲少40%,两人各收割6亩水稻,乙则比甲多用0.4小时完成任务;甲、乙在收割过程中对应收稻谷有一定的遗落或破损,损失率分别为3%,2%.
    (1)甲、乙两人操控A、B型号收割机每小时各能收割多少亩水稻?
    (2)某水稻种植大户有与比赛中规格相同的100亩待收水稻,邀请甲、乙两人操控原收割机一同前去完成收割任务,要求平均损失率不超过2.4%,则最多安排甲收割多少小时?
    【答案】(1)甲操控A型号收割机每小时收割10亩水稻,乙操控B型号收割机每小时收割6亩水稻
    (2)最多安排甲收割4小时
    【分析】(1)设甲操控A型号收割机每小时收割x亩水稻,则乙操控B型号收割机每小时收割(1﹣40%)x亩水稻,利用工作时间=工作总量÷工作效率,结合乙比甲多用0.4小时完成任务,即可得出关于x的分式方程,解之经检验后即可求出甲操控A型号收割机每小时收割水稻的亩数,再将其代入(1﹣40)x中即可求出乙操控B型号收割机每小时收割水稻的亩数;
    (2)设安排甲收割y小时,则安排乙收割小时,根据要求平均损失率不超过2.4%,即可得出关于y的一元一次不等式,解之取其中的最大值即可得出结论.
    【详解】(1)解:设甲操控A型号收割机每小时收割x亩水稻,则乙操控B型号收割机每小时收割(1﹣40%)x亩水稻,依题意得:0.4,
    解得:x=10,
    经检验,x=10是原方程的解,且符合题意,
    ∴(1﹣40%)x=(1﹣40%)×10=6.
    答:甲操控A型号收割机每小时收割10亩水稻,乙操控B型号收割机每小时收割6亩水稻.
    (2)设安排甲收割y小时,则安排乙收割小时,
    依题意得:3%×10y+2%×6×≤2.4%×100,
    解得:y≤4.
    答:最多安排甲收割4小时.
    【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.
    25.已知:如图①,将一块45°角的直角三角板与正方形的一角重合,连接,点M是的中点,连接.

    (1)请你猜想与的数量关系是__________.
    (2)如图②,把正方形绕着点D顺时针旋转角().
    ①与的数量关系是否仍成立,若成立,请证明;若不成立,请说明理由;(温馨提示:延长到点N,使,连接)
    ②求证:;
    ③若旋转角,且,求的值.(可不写过程,直接写出结果)
    【答案】(1)AF=2DM(2)①成立,理由见解析②见解析③
    【分析】(1)根据题意合理猜想即可;
    (2)①延长到点N,使,连接,先证明△MNC≌△MDE,再证明△ADF≌△DCN,得到AF=DN,故可得到AF=2DM;
    ②根据全等三角形的性质和直角的换算即可求解;
    ③依题意可得∠AFD=∠EDM=30°,可设AG=k,得到DG,AD,FG,ED的长,故可求解.
    【详解】(1)猜想与的数量关系是AF=2DM,
    故答案为:AF=2DM;
    (2)①AF=2DM仍然成立,
    理由如下:延长到点N,使,连接,
    ∵M是CE中点,∴CM=EM
    又∠CMN=∠EMD,∴△MNC≌△MDE∴CN=DE=DF,∠MNC=∠MDE∴CN∥DE,
    又AD∥BC∴∠NCB=∠EDA∴△ADF≌△DCN∴AF=DN∴AF=2DM
    ②∵△ADF≌△DCN∴∠NDC=∠FAD,∵∠CDA=90°,∴∠NDC+∠NDA=90°∴∠FAD+∠NDA=90°
    ∴AF⊥DM

    ③∵,∴∠EDC=90°-45°=45°∵,∴∠EDM=∠EDC=30°,
    ∴∠AFD=30°
    过A点作AG⊥FD的延长线于G点,∴∠ADG=90°-45°=45°
    ∴△ADG是等腰直角三角形,
    设AG=k,则DG=k,AD=AG÷sin45°=k,FG=AG÷tan30°=k,
    ∴FD=ED=k-k
    故=.

    【点睛】此题主要考查四边形综合,解题的关键是熟知正方形的性质、旋转的特点、全等三角形的判定与性质及三角函数的运用.
    26.抛物线过点,点,顶点为.

    (1)求抛物线的表达式及点的坐标;
    (2)如图1,点在抛物线上,连接并延长交轴于点,连接,若是以为底的等腰三角形,求点的坐标;
    (3)如图2,在(2)的条件下,点是线段上(与点,不重合)的动点,连接,作,边交轴于点,设点的横坐标为,求的取值范围.
    【答案】(1),;(2);(3)
    【分析】(1)将的坐标代入解析式,待定系数法求解析式即可,根据顶点在对称轴上,求得对称轴,代入解析式即可的顶点的坐标;
    (2)设,根据是以为底的等腰三角形,根据,求得点的坐标,进而求得解析式,联立二次函数解析式,解方程组即可求得点的坐标;
    (3)根据题意,可得,设,根据相似三角形的性质,线段成比例,可得,根据配方法可得的最大值,根据点是线段上(与点,不重合)的动点,可得的最小值,即可求得的范围.
    【详解】(1)抛物线过点,点,,解得,
    ,,代入,解得:,
    顶点,
    (2)设, ,,是以为底的等腰三角形,
    即解得

    设直线的解析式为解得
    直线的解析式为联立解得:,
    (3)点的横坐标为,,,

    设,则,是以为底的等腰三角形,





    整理得

    当点与点重合时,与点重合,由题意,点是线段上(与点,不重合)的动点,


    的取值范围为:.
    【点睛】本题考查了二次函数综合,相似三角形的性质与判定,待定系数法求一次函数解析式,待定系数法求解析式,等腰三角形的性质,二次函数的性质,综合运用以上知识是解题的关键.



    相关试卷

    数学(河南卷)2023年中考考前最后一卷(全解全析): 这是一份数学(河南卷)2023年中考考前最后一卷(全解全析),共17页。

    2023年中考考前最后一卷:数学(广西卷)(全解全析): 这是一份2023年中考考前最后一卷:数学(广西卷)(全解全析),共21页。

    数学(深圳卷)2023年中考考前最后一卷(全解全析): 这是一份数学(深圳卷)2023年中考考前最后一卷(全解全析),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2023年中考考前最后一卷:数学(广西卷)(全解全析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map