所属成套资源:新高考数学一轮复习讲义 (2份打包,解析版+原卷版)
新高考数学一轮复习讲义3.2《导数的应用第2课时 导数与函数的极值、最值》(2份打包,解析版+原卷版)
展开这是一份新高考数学一轮复习讲义3.2《导数的应用第2课时 导数与函数的极值、最值》(2份打包,解析版+原卷版),文件包含新高考数学一轮复习讲义32《导数的应用第2课时导数与函数的极值最值》含详解doc、新高考数学一轮复习讲义32《导数的应用第2课时导数与函数的极值最值》原卷版doc等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
第2课时 导数与函数的极值、最值
题型一 用导数求解函数极值问题
命题点1 根据函数图象判断极值
例1 设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是( )
A.函数f(x)有极大值f(2)和极小值f(1)
B.函数f(x)有极大值f(-2)和极小值f(1)
C.函数f(x)有极大值f(2)和极小值f(-2)
D.函数f(x)有极大值f(-2)和极小值f(2)
答案 D
解析 由题图可知,当x<-2时,f′(x)>0;
当-2
由此可以得到函数f(x)在x=-2处取得极大值,
在x=2处取得极小值.
命题点2 求已知函数的极值
例2 (2018·阜新调研)设函数f(x)=ln(x+1)+a(x2-x),其中a∈R.讨论函数f(x)极值点的个数,并说明理由.
解 f′(x)=+a(2x-1)
= (x>-1).
令g(x)=2ax2+ax-a+1,x∈(-1,+∞).
①当a=0时,g(x)=1,
此时f′(x)>0,函数f(x)在(-1,+∞)上单调递增,无极值点.
②当a>0时,Δ=a2-8a(1-a)=a(9a-8).
a.当0 函数f(x)在(-1,+∞)上单调递增,无极值点.
b.当a>时,Δ>0,
设方程2ax2+ax-a+1=0的两根为x1,x2(x1
由g(-1)=1>0,可得-1
当x∈(x1,x2)时,g(x)<0,f′(x)<0,函数f(x)单调递减;
当x∈(x2,+∞)时,g(x)>0,f′(x)>0,函数f(x)单调递增.
因此函数f(x)有两个极值点.
③当a<0时,Δ>0,由g(-1)=1>0,
可得x1<-1
当x∈(x2,+∞)时,g(x)<0,f′(x)<0,函数f(x)单调递减.
所以函数f(x)有一个极值点.
综上所述,当a<0时,函数f(x)有一个极值点;
当0≤a≤时,函数f(x)无极值点;
当a>时,函数f(x)有两个极值点.
命题点3 根据极值(点)求参数
例3 已知函数f(x)=-k,若x=2是函数f(x)的唯一一个极值点,则实数k的取值范围为( )
A.(-∞,e] B.[0,e]
C.(-∞,e) D.[0,e)
答案 A
解析 因为函数f(x)=-k,
所以函数f(x)的定义域是(0,+∞),
所以f′(x)=-k
=.
因为x=2是函数f(x)的唯一一个极值点,
所以x=2是y=f′(x)的唯一变号零点.
所以y=-k在(0,+∞)上无变号零点.
设g(x)=,则g′(x)=.
当x∈(0,1)时,g′(x)<0,当x∈(1,+∞)时,g′(x)>0,
所以g(x)在(0,1)上单调递减,在(1,+∞)上单调递增,
所以g(x)min=g(1)=e,结合g(x)=与y=k的图象(图略)知,
若x=2是函数f(x)的唯一一个极值点,则应需k≤e.
思维升华 函数极值的两类热点问题
(1)求函数f(x)极值的一般解题步骤
①确定函数的定义域;②求导数f′(x);③解方程f′(x)=0,求出函数定义域内的所有根;④列表检验f′(x)在f′(x)=0的根x0左右两侧值的符号.
(2)根据函数极值情况求参数的两个要领
①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解.
②验证:求解后验证根的合理性.
跟踪训练1 已知函数f(x)=ax-1-ln x(a∈R).
(1)讨论函数f(x)在定义域内的极值点的个数;
(2)若函数f(x)在x=1处取得极值,∀x∈(0,+∞),f(x)≥bx-2恒成立,求实数b的取值范围.
解 (1)f(x)的定义域为(0,+∞).
f′(x)=a-=,
当a≤0时,f′(x)<0在(0,+∞)上恒成立,函数f(x)在(0,+∞)上单调递减,
∴f(x)在(0,+∞)上没有极值点;
当a>0时,由f′(x)<0得0
∴f(x)在上单调递减,在上单调递增,即f(x)在x=处有极小值,无极大值.
∴当a≤0时,f(x)在(0,+∞)上没有极值点,当a>0时,f(x)在(0,+∞)上有一个极值点.
(2)∵函数f(x)在x=1处取得极值,
∴a=1,∴f(x)≥bx-2,即1+-≥b,
令g(x)=1+-,则g′(x)=,令g′(x)=0,得x=e2,则g(x)在(0,e2)上单调递减,在(e2,+∞)上单调递增,
∴g(x)min=g(e2)=1-,即b≤1-,
即实数b的取值范围为.
题型二 用导数求函数的最值
例4 已知函数f(x)=+kln x,k<,求函数f(x)在上的最大值和最小值.
解 f′(x)=+=.
①若k=0,则f′(x)=-,在上恒有f′(x)<0,
所以f(x)在上单调递减.
②若k≠0,则f′(x)==.
(ⅰ)若k<0,则在上恒有<0.
所以f(x)在上单调递减,
(ⅱ)若k>0,由k<,
得>e,则x-<0在上恒成立,
所以<0,
所以f(x)在上单调递减.
综上,当k<时,f(x)在上单调递减,
所以f(x)min=f(e)=+k-1,f(x)max=f=e-k-1.
引申探究
若例题条件中的k<改为“k≥”,则函数f(x)在上的最小值是多少?
解 f′(x)==,
∵k≥,∴0<≤e,
若0<≤,即k≥e时,f′(x)≥0恒成立,f(x)在上为增函数,f(x)min=f=e-k-1.
若>即≤k
思维升华 (1)若函数在区间[a,b]上单调递增或递减,f(a)与f(b)一个为最大值,一个为最小值;
(2)若函数在闭区间[a,b]内有极值,要先求出[a,b]上的极值,与f(a),f(b)比较,最大的是最大值,最小的是最小值,可列表完成;
(3)函数f(x)在区间(a,b)上有唯一一个极值点,这个极值点就是最大(或最小)值点,此结论在导数的实际应用中经常用到.
跟踪训练2 已知常数a≠0,f(x)=aln x+2x.当f(x)的最小值不小于-a时,求实数a的取值范围.
解 因为f′(x)=,
所以当a>0,x∈(0,+∞)时,f′(x)>0,
即f(x)在(0,+∞)上单调递增,没有最小值;
当a<0时,由f′(x)>0得,x>-,
所以f(x)在上单调递增;
由f′(x)<0得,0
所以当a<0时,f(x)的最小值为f=aln+2×.
根据题意得f=aln+2×≥-a,即a[ln(-a)-ln 2]≥0.
因为a<0,所以ln(-a)-ln 2≤0,
解得-2≤a<0,
所以实数a的取值范围是[-2,0).
题型三 函数极值、最值的综合问题
例5 (2018·葫芦岛调研)已知函数f(x)=(a>0)的导函数y=f′(x)的两个零点为-3和0.
(1)求f(x)的单调区间;
(2)若f(x)的极小值为-e3,求f(x)在区间[-5,+∞)上的最大值.
解 (1)f′(x)=
=.
令g(x)=-ax2+(2a-b)x+b-c,
因为ex>0,所以y=f′(x)的零点就是g(x)=-ax2+(2a-b)x+b-c的零点且f′(x)与g(x)符号相同.
又因为a>0,所以当-3
当x<-3或x>0时,g(x)<0,即f′(x)<0,
所以f(x)的单调递增区间是(-3,0),
单调递减区间是(-∞,-3),(0,+∞).
(2)由(1)知,x=-3是f(x)的极小值点,
所以有
解得a=1,b=5,c=5,
所以f(x)=.
因为f(x)的单调递增区间是(-3,0),
单调递减区间是(-∞,-3),(0,+∞),
所以f(0)=5为函数f(x)的极大值,
故f(x)在区间[-5,+∞)上的最大值取f(-5)和f(0)中的最大者,而f(-5)==5e5>5=f(0),
所以函数f(x)在区间[-5,+∞)上的最大值是5e5.
思维升华 (1)求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小.
(2)求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.
跟踪训练3 若函数f(x)=x3+x2-在区间(a,a+5)上存在最小值,则实数a的取值范围是( )
A.[-5,0) B.(-5,0)
C.[-3,0) D.(-3,0)
答案 C
解析 由题意,得f′(x)=x2+2x=x(x+2),
故f(x)在(-∞,-2),(0,+∞)上是增函数,
在(-2,0)上是减函数,作出其图象如图所示,
令x3+x2-=-,得
x=0或x=-3,则结合图象可知,
解得a∈[-3,0).
利用导数求函数的最值
例 (12分)已知函数f(x)=ln x-ax(a∈R).
(1)求函数f(x)的单调区间;
(2)当a>0时,求函数f(x)在[1,2]上的最小值.
规范解答
解 (1)f′(x)=-a(x>0),
①当a≤0时,f′(x)=-a>0,即函数f(x)的单调递增区间为(0,+∞).[2分]
②当a>0时,令f′(x)=-a=0,可得x=,
当0
当x>时,f′(x)=<0,
故函数f(x)的单调递增区间为,
单调递减区间为.[4分]
综上可知,当a≤0时,函数f(x)的单调递增区间为(0,+∞);
当a>0时,函数f(x)的单调递增区间为,单调递减区间为.[5分]
(2)①当≤1,即a≥1时,函数f(x)在[1,2]上是减函数,所以f(x)的最小值是f(2)=ln 2-2a.[6分]
②当≥2,即0 ③当1<<2,即 所以当 当ln 2≤a<1时,最小值为f(2)=ln 2-2a.[11分]
综上可知,当0 当a≥ln 2时,函数f(x)的最小值是f(2)=ln 2-2a.[12分]
用导数法求给定区间上的函数的最值问题的一般步骤
第一步:(求导数)求函数f(x)的导数f′(x);
第二步:(求极值)求f(x)在给定区间上的单调性和极值;
第三步:(求端点值)求f(x)在给定区间上的端点值;
第四步:(求最值)将f(x)的各极值与f(x)的端点值进行比较,确定f(x)的最大值与最小值;
第五步:(反思)反思回顾,查看关键点,易错点和解题规范.
1.函数f(x)的定义域为R,导函数f′(x)的图象如图所示,则函数f(x)( )
A.无极大值点、有四个极小值点
B.有三个极大值点、一个极小值点
C.有两个极大值点、两个极小值点
D.有四个极大值点、无极小值点
答案 C
解析 设f′(x)的图象与x轴的4个交点的横坐标从左至右依次为x1,x2,x3,x4.
当x
2.已知a为函数f(x)=x3-12x的极小值点,则a等于( )
A.-4 B.-2 C.4 D.2
答案 D
解析 由题意得f′(x)=3x2-12,由f′(x)=0得x=±2,当x∈(-∞,-2)时,f′(x)>0,函数f(x)单调递增,当x∈(-2,2)时,f′(x)<0,函数f(x)单调递减,当x∈(2,+∞)时,f′(x)>0,函数f(x)单调递增,所以a=2.
3.函数y=xex的最小值是( )
A.-1 B.-e C.- D.不存在
答案 C
解析 因为y=xex,所以y′=ex+xex=(1+x)ex.当x>-1时,y′>0;当x<-1时,y′<0,所以当x=-1时,函数取得最小值,且ymin=-.故选C.
4.(2018·包头调研)已知e为自然对数的底数,设函数f(x)=(ex-1)(x-1)k(k=1,2),则( )
A.当k=1时,f(x)在x=1处取得极小值
B.当k=1时,f(x)在x=1处取得极大值
C.当k=2时,f(x)在x=1处取得极小值
D.当k=2时,f(x)在x=1处取得极大值
答案 C
解析 当k=1时,f′(x)=ex·x-1,f′(1)≠0,
∴x=1不是f(x)的极值点.
当k=2时,f′(x)=(x-1)(xex+ex-2),
显然f′(1)=0,且在x=1附近的左侧f′(x)<0,
当x>1时,f′(x)>0,
∴f(x)在x=1处取得极小值.故选C.
5.若函数f(x)=x3-2cx2+x有极值点,则实数c的取值范围为( )
A.
B.
C.∪
D.∪
答案 D
解析 若函数f(x)=x3-2cx2+x有极值点,
则f′(x)=3x2-4cx+1=0有两个不等实根,
故Δ=(-4c)2-12>0,
解得c>或c<-.
所以实数c的取值范围为∪.
6.若商品的年利润y(万元)与年产量x(百万件)的函数关系式为y=-x3+27x+123(x>0),则获得最大利润时的年产量为( )
A.1百万件 B.2百万件
C.3百万件 D.4百万件
答案 C
解析 y′=-3x2+27=-3(x+3)(x-3),
当0
当x>3时,y′<0.
故当x=3时,该商品的年利润最大.
7.设a∈R,若函数y=ex+ax有大于零的极值点,则实数a的取值范围是________.
答案 (-∞,-1)
解析 ∵y=ex+ax,∴y′=ex+a.
∵函数y=ex+ax有大于零的极值点,
∴方程ex+a=0有大于零的解,
∵当x>0时,-ex<-1,∴a=-ex<-1.
8.函数f(x)=x3-3a2x+a(a>0)的极大值是正数,极小值是负数,则a的取值范围是________.
答案
解析 f′(x)=3x2-3a2=3(x+a)(x-a),
由f′(x)=0得x=±a,
当-a
∴f(x)的极大值为f(-a),极小值为f(a).
∴f(-a)=-a3+3a3+a>0且f(a)=a3-3a3+a<0,
解得a>.
∴a的取值范围是.
9.已知函数f(x)=-x3+ax2-4在x=2处取得极值,若m∈[-1,1],则f(m)的最小值为________.
答案 -4
解析 f′(x)=-3x2+2ax,由f(x)在x=2处取得极值知f′(2)=0,即-3×4+2a×2=0,故a=3.
由此可得f(x)=-x3+3x2-4.
f′(x)=-3x2+6x,由此可得f(x)在(-1,0)上单调递减,在(0,1)上单调递增,
∴当m∈[-1,1]时,f(m)min=f(0)=-4.
10.(2018·鞍山调研)已知y=f(x)是奇函数,当x∈(0,2)时,f(x)=ln x-ax ,当x∈(-2,0)时,f(x)的最小值为1,则a=________.
答案 1
解析 由题意知,当x∈(0,2)时,f(x)的最大值为-1.
令f′(x)=-a=0,得x=,
当0
当x>时,f′(x)<0.
∴f(x)max=f=-ln a-1=-1,解得a=1.
11.设函数f(x)=aln x-bx2(x>0),若函数f(x)在x=1处与直线y=-相切.
(1)求实数a,b的值;
(2)求函数f(x)在上的最大值.
解 (1)f′(x)=-2bx,
∵函数f(x)在x=1处与直线y=-相切,
∴解得
(2)由(1)知,f(x)=ln x-x2,
f′(x)=-x=,
当≤x≤e时,令f′(x)>0,得≤x<1,
令f′(x)<0,得1
在(1,e]上单调递减,
∴f(x)max=f(1)=-.
12.(2018·丹东质检)已知函数f(x)=
(1)求f(x)在区间(-∞,1)上的极小值和极大值点;
(2)求f(x)在[-1,e](e为自然对数的底数)上的最大值.
解 (1)当x<1时,f′(x)=-3x2+2x=-x(3x-2),
令f′(x)=0,解得x=0或x=.
当x变化时,f′(x),f(x)的变化情况如下表:
x
(-∞,0)
0
f′(x)
-
0
+
0
-
f(x)
↘
极小值
↗
极大值
↘
故当x=0时,函数f(x)取得极小值f(0)=0,
函数f(x)的极大值点为x=.
(2)①当-1≤x<1时,由(1)知,函数f(x)在[-1,0]和上单调递减,在上单调递增.
因为f(-1)=2,f=,f(0)=0,
所以f(x)在[-1,1)上的最大值为2.
②当1≤x≤e时,f(x)=aln x,
当a≤0时,f(x)≤0;
当a>0时,f(x)在[1,e]上单调递增,
则f(x)在[1,e]上的最大值为f(e)=a.
故当a≥2时,f(x)在[-1,e]上的最大值为a;
当a<2时,f(x)在[-1,e]上的最大值为2.
13.函数f(x)=x3-3x-1,若对于区间[-3,2]上的任意x1,x2,都有|f(x1)-f(x2)|≤t,则实数t的最小值是( )
A.20 B.18 C.3 D.0
答案 A
解析 因为f′(x)=3x2-3=3(x-1)(x+1),
令f′(x)=0,得x=±1,可知-1,1为函数的极值点.
又f(-3)=-19,f(-1)=1,f(1)=-3,f(2)=1,
所以在区间[-3,2]上,f(x)max=1,f(x)min=-19.
由题设知在区间[-3,2]上,f(x)max-f(x)min≤t,
从而t≥20,所以t的最小值是20.
14.(2018·通辽模拟)已知函数f(x)=aex-2x-2a,且a∈[1,2],设函数f(x)在区间[0,ln 2]上的最小值为m,则m的取值范围是________.
答案 [-2,-2ln 2]
解析 g(a)=f(x)=a(ex-2)-2x是关于a的一次函数,当x∈[0,ln 2)时,ex-2<0,即y=g(a)是减函数,
∵a∈[1,2],
∴g(a)min=2(ex-2)-2x(易知x=ln 2也成立),
设M(x)=2(ex-2)-2x,
则M′(x)=2ex-2,∵x∈[0,ln 2],∴M′(x)≥0,
则M(x)在[0,ln 2]上为增函数,
∴M(x)min=M(0)=-2,
M(x)max=M(ln 2)=-2ln 2,
∴m的取值范围是[-2,-2ln 2].
15.已知函数f(x)=xln x+mex(e为自然对数的底数)有两个极值点,则实数m的取值范围是__________.
答案
解析 f(x)=xln x+mex(x>0),∴f′(x)=ln x+1+mex(x>0),由函数f(x)有两个极值点可得y=-m和g(x)=在(0,+∞)上有两个交点,
g′(x)=(x>0),令h(x)=-ln x-1,
则h′(x)=--<0,
∴h(x)在(0,+∞)上单调递减且h(1)=0,
∴当x∈(0,1]时,h(x)≥0,即g′(x)≥0,g(x)在(0,1]上单调递增,g(x)≤g(1)=,当x∈(1,+∞)时,h(x)<0,即g′(x)<0,g(x)在(1,+∞)上单调递减,
故g(x)max=g(1)=,
而当x→0时,g(x)→-∞,当x→+∞时,g(x)→0;
若y=-m和g(x)的图象在(0,+∞)上有两个交点,
只需0<-m<,故-
解 因为f′(x)=a-=,所以当0<
综上,正实数a的值为e.
相关试卷
这是一份(新高考)高考数学一轮复习学案+分层提升3.3《导数与函数的极值、最值》(2份打包,原卷版+教师版),文件包含新高考高考数学一轮复习讲义+巩固练习33《导数与函数的极值最值》原卷版doc、新高考高考数学一轮复习讲义+巩固练习33《导数与函数的极值最值》原卷版pdf、新高考高考数学一轮复习讲义+巩固练习33《导数与函数的极值最值》教师版doc、新高考高考数学一轮复习讲义+巩固练习33《导数与函数的极值最值》教师版pdf等4份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。
这是一份高考数学一轮复习基础版讲义(适合艺术生、基础生一轮复习)——导数的应用函数的极值与最值,文件包含第15讲导数的应用导数与函数的极值最值解析版docx、第15讲导数的应用导数与函数的极值最值原卷版docx等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。
这是一份新高考数学一轮复习《导数与函数的极值、最值》课时练习(2份打包,教师版+原卷版),文件包含新高考数学一轮复习《导数与函数的极值最值》课时练习教师版doc、新高考数学一轮复习《导数与函数的极值最值》课时练习原卷版doc等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。