初中数学湘教版八年级下册1.4 角平分线的性质精品习题
展开湘教版数学八年级下册课时练习1.4
《角平分线的性质》
一 、选择题
1.如图,OP是∠AOB的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN的取值范围为( )
A.PN<3 B.PN>3 C.PN≥3 D.PN≤3
2.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=( )
A.30° B.35° C.45° D.60°
3.如图,用直尺和圆规作∠AOB的角平分线,能得出射线OC就是∠AOB的角平分线的根据是( )
A.SSS B.SAS C.ASA D.AAS
4.如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在( )
A.在AC、BC两边高线的交点处
B.在AC、BC两边中线的交点处
C.在∠A、∠B两内角平分线的交点处
D.在AC、BC两边垂直平分线的交点处
5.数学课上,小明进行了如下的尺规作图(如图所示):
(1)在△AOB(OA<OB)边OA、OB上分别截取OD、OE,使得OD=OE;
(2)分别以点D、E为圆心,以大于0.5DE为半径作弧,两弧交于△AOB内的一点C;
(3)作射线OC交AB边于点P.
那么小明所求作的线段OP是△AOB的( )
A.一条中线 B.一条高 C.一条角平分线 D.不确定
6.如图,P是∠AOB平分线上一点,CD⊥OP于F,并分别交OA、OB于CD,则CD P点到∠AOB两边距离之和.( )
A.小于 B.大于 C.等于 D.不能确定
7.点P在∠AOB的平分线上,点P到OA边的距离等于6,点Q是OB边上的任意一点,则下列选项正确的是( )
A.PQ>6 B.PQ≥6 C.PQ<6 D.PQ≤6
8.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=9,DE=2,AB=5,则AC长是( )
A.3 B.4 C.5 D.6
9.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图,一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的平分线.”他这样做的依据是( )
A.角的内部到角的两边的距离相等的点在角的平分线上
B.角平分线上的点到这个角两边的距离相等
C.三角形三条角平分线的交点到三条边的距离相等
D.以上均不正确
10.如图所示,点A、B分别是∠NOP、∠MOP平分线上的点,AB⊥OP于点E,BC⊥MN于点C,AD⊥MN于点D,下列结论错误的是( )
A.AD+BC=AB B.与∠CBO互余的角有两个
C.∠AOB=90° D.点O是CD的中点
二 、填空题
11.如图,在△ABC中,∠BAC=50°,AD为∠BAC平分线,DE⊥AB,DF⊥AC,则∠DEF= .
12.如图,在△ABC中,∠C=90°,BD是∠ABC的平分线,DE⊥AB,AC=8cm,AE=4cm,则DE的长是 .
13.已知AD是△ABC的角平分线,DE⊥AB于E,且DE=3cm,则点D到AC的距离为 .
14.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有 对全等三角形.
15.如图,△ABC的角平分线交于点P,已知AB,BC,CA的长分别为5,7,6,则S△ABP∶S△BPC∶S△APC=_________.
16.如图,AD是△ABC的角平分线,AB:AC=3:2,△ABD的面积为15,则△ACD面积为 .
三 、解答题
17.如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于点F,且BE=CF.
求证:(1)△BED≌△CFD;
(2)AD平分∠BAC.
18.(1)如图1,在△ABC中,EF与AC交于点G,与BC的延长线交于点F,∠B=45°,∠F=30°,∠CGF=70°,求∠A的度数.
(2)利用三角板也能画出一个角的平分线,画法如下:
①利用三角板在∠AOB的两边上分别取OM=ON;
②分别过点M、N画OM、ON的垂线,交点为P;
③画射线OP,所以射线OP为∠AOB的角平分线.
请你评判这种作法的正确性,并加以证明.
19.如图,在Rt△ABC的场地上,∠B=90°,AB=BC,∠CAB的平分线AE交BC于点E.甲、乙两人同时从A处出发,以相同的速度分别沿AC和A→B→E线路前进,甲的目的地为C,乙的目的地为E.请你判断一下,甲、乙两人谁先到达各自的目的地?并说明理由.
20.如图,在△ABC中,M为BC的中点,DM⊥BC,DM与∠BAC的角平分线交于点D,DE⊥AB,DF⊥AC,E、F为垂足,求证:BE=CF.
21.已知射线AP是△ABC的外角平分线,连结PB、PC.
(1)如图1,若BP平分∠ABC,且∠ACB=30°,直接写出∠APB= .
(2)如图1,若P与A不重合,求证:AB+AC<PB+PC.
参考答案
1.C.
2.B.
3.A.
4.C
5.C.
6.B.
7.B.
8.B
9.A.
10.B
11.答案为:25°;
12.答案为:3cm.
13.答案为:3cm.
14.答案为:3
15.答案为:5:7:6.
16.答案为:10;
17.证明;(1)∵D是BC的中点,
∴BD=CD,
∵DE⊥AB,DF⊥AC,
在Rt△BED和Rt△CFD中,
,
∴Rt△BED≌Rt△CFD(HL),
(2)∵Rt△BED≌Rt△CFD,
∴∠B=∠C,
∴AB=AC,
又∵D为BC的中点,
∴AD平分∠BAC..
18.解:(1)∵∠CGF=70°,
∴∠AGE=70°,
∵∠B=45°,∠F=30°,
∴∠AEF=∠B+∠F=75°,
∴∠A=180°﹣75°﹣70°=35°;
(2)证明:这种作法的正确.
理由如下:由作图得∠PMO=∠PNO=90°,
在Rt△PMO和Rt△PNO中
,
∴Rt△PMO≌Rt△PNO,
∴∠POM=∠PON,
即射线OP为∠AOB的角平分线.
19.解:同时到达.理由如下:
过点E作EF⊥AC于点F.
∵AB=BC,∠B=90°,
∴∠C==45°.
∵EF⊥AC,
∴∠EFC=90°,
∴∠CEF=90°-∠C=45°=∠C,
∴EF=CF.
又∵AE平分∠CAB,
∴EF=EB.
易证得△AEF≌△AEB,
得AF=AB,
可知AB+BE=AF+CF=AC,
故同时到达.
20.证明:连接DB.
∵点D在BC的垂直平分线上,
∴DB=DC;
∵D在∠BAC的平分线上,DE⊥AB,DF⊥AC,
∴DE=DF;
∵∠DFC=∠DEB=90°,
在Rt△DCF和Rt△DBE中,
DB=DC,DE=DF.
∴Rt△DCF≌Rt△DBE(HL),
∴CF=BE(全等三角形的对应边相等).
21.解:(1)∵∠DAC=∠ABC+∠ACB,∠1=∠2+∠APB,
∵AE平分∠DAC,PB平分∠ABC,
∴∠1=∠DAC,∠2=∠ABC,
∴∠APB=∠1﹣∠2=∠DAC﹣ABC=∠ACB=15°,
(2)在射线AD上取一点H,是的AH=AC,连接PH.则△APH≌△APC,
∴PC=PD,
在△BPH中,PB+PH>BH,
∴PB+PC>AB+AC.
初中湘教版1.4 角平分线的性质巩固练习: 这是一份初中湘教版1.4 角平分线的性质巩固练习,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湘教版八年级下册1.3 直角三角形全等的判定第1课时练习: 这是一份湘教版八年级下册1.3 直角三角形全等的判定第1课时练习,共3页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中数学湘教版八年级下册1.4 角平分线的性质第1课时同步训练题: 这是一份初中数学湘教版八年级下册1.4 角平分线的性质第1课时同步训练题,共6页。