七年级数学下册考点精练专题03 平行线之猪手图和子弹图
展开
这是一份七年级数学下册考点精练专题03 平行线之猪手图和子弹图,共35页。
专题03 平行线之猪手图和子弹图
【模型讲解】
请在横线上填上合适的内容.
(1)如图(1)已知//,则.
解:过点作直线//.∴( ).( )
∵//,//,
∴( )//( ).(如果两条直线和第三条直线平行,那么这两直线平行)
∴( ).( ).∴.∴.
(2)如图②,如果//,则( )
解:(1)解:过点E作直线EF∥AB.
∴∠FEB=∠B.( 两直线平行,内错角相等)∵AB∥CD,EF∥AB,
∴ EF∥CD(如果两条直线和第三条直线平行,那么这两直线平行).
∴∠FED=∠D( 两直线平行,内错角相等).
∴∠B+∠D=∠BEF+∠FED.
∴∠B+∠D=∠BED.
故答案为:∠B,两直线平行,内错角相等,EF,CD,∠D,两直线平行,内错角相等;
(2)解:过点E作直线EF∥AB,如图.
∴∠FEB+∠B=180°.两直线平行,内错角相等).
∵AB∥CD,EF∥AB,
∴ EF∥CD(如果两条直线和第三条直线平行,那么这两直线平行).
∴∠FED+∠D=180° ( 两直线平行,内错角相等).
∴∠B+∠D+∠BEF+∠FED=360°.∴∠B+∠BED+∠D=360°.
【模型演练】
1.如图所示,直角三角板的60°角压在一组平行线上,,,则______度.
2.如图,AB∥EF,设∠C=90°,那么x,y,z的关系式为______.
3.在图中,,与又有何关系?
4.已知直线AB//CD,EF是截线,点M在直线AB、CD之间.
(1)如图1,连接GM,HM.求证:∠M=∠AGM+∠CHM;
(2)如图2,在∠GHC的角平分线上取两点M、Q,使得∠AGM=∠HGQ.试判断∠M与∠GQH之间的数量关系,并说明理由.
5.已知直线,直线EF分别与直线a,b相交于点E,F,点A,B分别在直线a,b上,且在直线EF的左侧,点P是直线EF上一动点(不与点E,F重合),设∠PAE=∠1,∠APB=∠2,∠PBF=∠3.
(1)如图,当点在线段上运动时,试说明∠1+∠3=∠2;
(2)当点P在线段EF外运动时有两种情况.
①如图2写出∠1,∠2,∠3之间的关系并给出证明;
②如图3所示,猜想∠1,∠2,∠3之间的关系(不要求证明).
6.问题情境:如图①,直线,点E,F分别在直线AB,CD上.
(1)猜想:若,,试猜想______°;
(2)探究:在图①中探究,,之间的数量关系,并证明你的结论;
(3)拓展:将图①变为图②,若,,求的度数.
7.如图1,已知AB∥CD,∠B=30°,∠D=120°;
(1)若∠E=60°,则∠F= ;
(2)请探索∠E与∠F之间满足的数量关系?说明理由;
(3)如图2,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数.
8.如图1,AB//CD,E是AB,CD之间的一点.
(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并证明你的结论;
(2)如图2,若∠BAE,∠CDE的角平分线交于点F,直接写出∠AFD与∠AED之间的数量关系;
(3)将图2中的射线DC沿DE翻折交AF于点G得图3,若∠AGD的余角等于2∠E的补角,求∠BAE的大小.
9.如图:
(1)如图1,,,,直接写出的度数.
(2)如图2,,点为直线,间的一点,平分,平分,写出与之间的关系并说明理由.
(3)如图3,与相交于点,点为内一点,平分,平分,若,,直接写出的度数.
10.已知AB//CD.
(1)如图1,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D;
(2)如图,连接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直线交于点F.
①如图2,当点B在点A的左侧时,若∠ABC=50°,∠ADC=60°,求∠BFD的度数.
②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示)
11.如图1,,,,求的度数.小明的思路是:如图2,过作,通过平行线性质可求的度数.
(1)请你按小明的思路,写出度数的求解过程;
(2)如图3,,点在直线上运动,记,.
①当点在线段上运动时,则与、之间有何数量关系?请说明理由;
②若点不在线段上运动时,请直接写出与、之间的数量关系.
12.如图1,点、分别在直线、上,,.
(1)求证:;(提示:可延长交于点进行证明)
(2)如图2,平分,平分,若,求与之间的数量关系;
(3)在(2)的条件下,如图3,平分,点在射线上,,若,直接写出的度数.
13.已知AB∥CD,线段EF分别与AB,CD相交于点E,F.
(1)请在横线上填上合适的内容,完成下面的解答:
如图1,当点P在线段EF上时,已知∠A=35°,∠C=62°,求∠APC的度数;
解:过点P作直线PH∥AB,
所以∠A=∠APH,依据是 ;
因为AB∥CD,PH∥AB,
所以PH∥CD,依据是 ;
所以∠C=( ),
所以∠APC=( )+( )=∠A+∠C=97°.
(2)当点P,Q在线段EF上移动时(不包括E,F两点):
①如图2,∠APQ+∠PQC=∠A+∠C+180°成立吗?请说明理由;
②如图3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,请直接写出∠M,∠A与∠C的数量关系.
14.已知ABCD,∠ABE的角分线与∠CDE的角分线相交于点F.
(1)如图1,若BM、DM分别是∠ABF和∠CDF的角平分线,且∠BED=100°,求∠M的度数;
(2)如图2,若∠ABM=∠ABF,∠CDM=∠CDF,∠BED=α°,求∠M的度数;
(3)若∠ABM=∠ABF,∠CDM=∠CDF,请直接写出∠M与∠BED之间的数量关系.
15.如图1,点在直线上,点在直线上,点在,之间,且满足.
(1)证明:;
(2)如图2,若,,点在线段上,连接,且,试判断与的数量关系,并说明理由;
(3)如图3,若(为大于等于的整数),点在线段上,连接,若,则______.
专题03 平行线之猪手图和子弹图
【模型讲解】
请在横线上填上合适的内容.
(1)如图(1)已知//,则.
解:过点作直线//.∴( ).( )
∵//,//,
∴( )//( ).(如果两条直线和第三条直线平行,那么这两直线平行)
∴( ).( ).∴.∴.
(2)如图②,如果//,则( )
解:(1)解:过点E作直线EF∥AB.
∴∠FEB=∠B.( 两直线平行,内错角相等)
∵AB∥CD,EF∥AB,
∴ EF∥CD(如果两条直线和第三条直线平行,那么这两直线平行).
∴∠FED=∠D( 两直线平行,内错角相等).
∴∠B+∠D=∠BEF+∠FED.∴∠B+∠D=∠BED.
故答案为:∠B,两直线平行,内错角相等,EF,CD,∠D,两直线平行,内错角相等;
(2)解:过点E作直线EF∥AB,如图.
∴∠FEB+∠B=180°.两直线平行,内错角相等).
∵AB∥CD,EF∥AB,
∴ EF∥CD(如果两条直线和第三条直线平行,那么这两直线平行).
∴∠FED+∠D=180° ( 两直线平行,内错角相等).
∴∠B+∠D+∠BEF+∠FED=360°.∴∠B+∠BED+∠D=360°.
【模型演练】
1.如图所示,直角三角板的60°角压在一组平行线上,,,则______度.
【答案】20
【分析】如图(见详解),过点E作, 先证明,再由平行线的性质定理得到,,结合已知条件即可得到.
【详解】解:由题意可得:.
如图,过点E作,
又∵,
∴,
∴,,
∵,
∴,
∴,
即:.
故答案为:20.
【点睛】本题重点考查了平行线的性质定理的运用.从“基本图形”的角度看,本题可以看作是“M”型的简单运用.解法不唯一,也可延长BE交CD于点G,结合三角形的外角定理来解决;或连结BD,结合三角形内角和定理来解决.
2.如图,AB∥EF,设∠C=90°,那么x,y,z的关系式为______.
【答案】y=90°-x+z.
【分析】作CG//AB,DH//EF,由AB//EF,可得AB//CG//HD//EF,根据平行线性质可得∠x=∠1,∠CDH=∠2,∠HDE=∠z,由∠C=90°,可得∠1+∠2=90°,由∠y=∠z+∠2,可证∠y=∠z+90°-∠x即可.
【详解】解:作CG//AB,DH//EF,
∵AB//EF,
∴AB//CG//HD//EF,
∴∠x=∠1,∠CDH=∠2,∠HDE=∠z
∵∠BCD=90°
∴∠1+∠2=90°,
∠y=∠CDH+∠HDE=∠z+∠2,
∵∠2=90°-∠1=90°-∠x,
∴∠y=∠z+90°-∠x.
即y=90°-x+z.
【点睛】本题考查平行线的性质,掌握平行线的性质,利用辅助线画出准确图形是解题关键.
3.在图中,,与又有何关系?
【答案】
【分析】此类题要过各个分点作已知直线的平行线,充分运用平行线的性质进行推导.
【详解】分别过,,作的平行线,
则,,,,
,
即,.
【点睛】此类题主要注意构造辅助线:平行线,解题的关键是充分运用平行线的性质进行证明.
4.已知直线AB//CD,EF是截线,点M在直线AB、CD之间.
(1)如图1,连接GM,HM.求证:∠M=∠AGM+∠CHM;
(2)如图2,在∠GHC的角平分线上取两点M、Q,使得∠AGM=∠HGQ.试判断∠M与∠GQH之间的数量关系,并说明理由.
【答案】(1)证明见详解
(2);理由见详解
【分析】(1)过点作,由,可知.由此可知:,,故;
(2)由(1)可知.再由,∠AGM=∠HGQ,可知 :,利用三角形内角和是180°,可得.
(1)
解:如图:过点作,
∴,
∴,,
∵,
∴.
(2)
解:,理由如下:
如图:过点作,
由(1)知,
∵平分,
∴,
∵∠AGM=∠HGQ,
∴,
∵,
∴.
【点睛】本题考查了利用平行线的性质求角之间的数量关系,正确的作出辅助线是解决本题的关键,同时这也是比较常见的几何模型“猪蹄模型”的应用.
5.已知直线,直线EF分别与直线a,b相交于点E,F,点A,B分别在直线a,b上,且在直线EF的左侧,点P是直线EF上一动点(不与点E,F重合),设∠PAE=∠1,∠APB=∠2,∠PBF=∠3.
(1)如图,当点在线段上运动时,试说明∠1+∠3=∠2;
(2)当点P在线段EF外运动时有两种情况.
①如图2写出∠1,∠2,∠3之间的关系并给出证明;
②如图3所示,猜想∠1,∠2,∠3之间的关系(不要求证明).
【答案】(1)证明见详解
(2)①;证明见详解;②;证明见详解
【分析】(1)如图4过点作,利用平行线的传递性可知,根据平行线的性质可知,,根据等量代换就可以得出;
(2)①如图5过点作,利用平行线的传递性可知,根据平行线的性质可知,,根据等量代换就可以得出;
②如图6过点作,利用平行线的传递性可知,根据平行线的性质可知,,根据等量代换就可以得出.
(1)
解:如图4所示:过点作,
∵
∴
∴,,
∵,
∴;
(2)
解:①如图5过点作,
∵
∴
∴,,
∵,
∴;
②如图6过点作,
∵
∴
∴,,
∵,
∴.
【点睛】本题利用“猪蹄模型”及其变式考查了利用平行线的性质求角之间的数量关系,准确的作出辅助线和找到对应的内错角是解决本题的关键.
6.问题情境:如图①,直线,点E,F分别在直线AB,CD上.
(1)猜想:若,,试猜想______°;
(2)探究:在图①中探究,,之间的数量关系,并证明你的结论;
(3)拓展:将图①变为图②,若,,求的度数.
【答案】(1)
(2);证明见详解
(3)
【分析】(1)过点作,利用平行的性质就可以求角度,解决此问;
(2)利用平行线的性质求位置角的数量关系,就可以解决此问;
(3)分别过点、点作、,然后利用平行线的性质求位置角的数量关系即可.
(1)
解:如图过点作,
∵,
∴.
∴,
.
∵,,
∴
∴.
∵,
∴∠P=80°.
故答案为:;
(2)
解:,理由如下:
如图过点作,
∵,
∴.
∴,
.
∴
∵,
.
(3)
如图分别过点、点作、
∵,
∴.
∴,
,
.
∴
∵,
,
,
∴
∴
故答案为:.
【点睛】本题考查了平行线的性质定理,准确的作出辅助线和正确的计算是解决本题的关键.
7.如图1,已知AB∥CD,∠B=30°,∠D=120°;
(1)若∠E=60°,则∠F= ;
(2)请探索∠E与∠F之间满足的数量关系?说明理由;
(3)如图2,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数.
【答案】(1)
(2),理由见解析
(3)
【分析】(1)如图1,分别过点,作,,根据平行线的性质得到,,,代入数据即可得到结论;
(2)如图1,根据平行线的性质得到,,由,,得到,根据平行线的性质得到,于是得到结论;
(3)如图2,过点作,设,则,根据角平分线的定义得到,,根据平行线的性质得到,,于是得到结论.
(1)
解:如图1,分别过点,作,,
,
,,
又,,
,
,
又,
,
,,
;
故答案为:;
(2)
解:如图1,分别过点,作,,
,
,,
又,,
,
,
又,
,
,,
,
;
(3)
解:如图2,过点作,
由(2)知,,
设,则,
平分,平分,
,,
,
,,
,
.
【点睛】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质定理是解题的关键.
8.如图1,AB//CD,E是AB,CD之间的一点.
(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并证明你的结论;
(2)如图2,若∠BAE,∠CDE的角平分线交于点F,直接写出∠AFD与∠AED之间的数量关系;
(3)将图2中的射线DC沿DE翻折交AF于点G得图3,若∠AGD的余角等于2∠E的补角,求∠BAE的大小.
【答案】(1);
(2);
(3)
【分析】(1)作EF∥AB,如图1,则EF∥CD,利用平行线的性质得∠1=∠EAE,∠2=∠CDE,从而得到∠BAE+∠CDE=∠AED
(2)如图2,由(1)的结论得∠AFD=∠BAE,∠CDF=∠CDE,则∠AFD=(∠BAE+∠CDE),加上(1)的结论得到∠AFD=∠AED;
(3)由(1)的结论得∠AGD=∠BAF+∠CDG,利用折叠性质得∠CDG=4∠CDF,再利用等量代换得到∠AGD=2∠AED-∠BAE,加上90°-∠AGD=180°-2∠AED,从而计算出∠BAE的度数.
(1)
∠BAE+∠CDE=∠AED
理由如下:
作EF∥AB,如图1
∵AB∥CD
∴EF∥CD
∴∠1=∠BAE,∠2=∠CDE
∴∠BAE+∠CDE=∠AED
(2)
如图2,由(1)的结论得
∠AFD=∠BAF+∠CDF
∵∠BAE、∠CDE的两条平分线交于点F
∴∠BAF=∠BAE,∠CDF=∠CDE
∴∠AFE=(∠BAE+∠CDE)
∵∠BAE+∠CDE=∠AED
∴∠AFD=∠AED
(3)
由(1)的结论得∠AGD=∠BAF+∠CDG
而射线DC沿DE翻折交AF于点G
∴∠CDG=4∠CDF
∴∠AGD=∠BAF+4∠CDF=∠BAE+2∠CDE=∠BAE+2(∠AED-∠BAE)=2∠AED-∠BAE
∵90°-∠AGD=180°-2∠AED
∴90°-2∠AED+∠BAE=180°-2∠AED
∴∠BAE=60°
【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
9.如图:
(1)如图1,,,,直接写出的度数.
(2)如图2,,点为直线,间的一点,平分,平分,写出与之间的关系并说明理由.
(3)如图3,与相交于点,点为内一点,平分,平分,若,,直接写出的度数.
【答案】(1)∠BED=66°;
(2)∠BED=2∠F,见解析;
(3)∠BED的度数为130°.
【分析】(1)首先作EF∥AB,根据直线AB∥CD,可得EF∥CD,所以∠ABE=∠1=45°,∠CDE=∠2=21°,据此推得∠BED=∠1+∠2=66°;
(2)首先作EG∥AB,延长DE交BF于点H,利用三角形的外角性质以及角平分线的定义即可得到∠BED=2∠F;
(3)延长DF交AB于点H,延长GE到I,利用三角形的外角性质以及角平分线的定义即可得到∠BED的度数为130°.
(1)
解:(1)如图,作EF∥AB,
,
∵直线AB∥CD,
∴EF∥CD,
∴∠ABE=∠1=45°,∠CDE=∠2=21°,
∴∠BED=∠1+∠2=66°;
(2)
解:∠BED=2∠F,
理由是:过点E作EG∥AB,延长DE交BF于点H,
∵AB∥CD,∴AB∥CD∥EG,
∴∠5=∠1+∠2,∠6=∠3+∠4,
又∵BF平分∠ABE,DF平分∠CDE,
∴∠2=∠1,∠3=∠4,则∠5=2∠2,∠6=2∠3,
∴∠BED=2(∠2+∠3) ,
又∠F+∠3=∠BHD,∠BHD+∠2=∠BED,
∴∠3+∠2+∠F=∠BED,
综上∠BED=∠F+12∠BED,即∠BED=2∠F;
(3)
解:延长DF交AB于点H,延长GE到I,
∵∠BGD=60°,
∴∠3=∠1+∠BGD=∠1+60°,∠BFD=∠2+∠3=∠2+∠1+60°=95°,
∴∠2+∠1=35°,即2(∠2+∠1) =70°,
∵BF平分∠ABE,DF平分∠CDE,
∴∠ABE=2∠2,∠CDE=2∠1,
∴∠BEI=∠ABE +∠BGE=2∠2+∠BGE,∠DEI=∠CDE+∠DGE=2∠1+∠DGE,
∴∠BED=∠BEI+∠DEI=2(∠2+∠1)+( ∠BGE+∠DGE)=70°+60°=130°,
∴∠BED的度数为130°.
【点睛】本题考查了平行线的判定和性质,三角形的外角性质等知识,掌握平行线的判定和性质,正确添加辅助线是解题关键.
10.已知AB//CD.
(1)如图1,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D;
(2)如图,连接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直线交于点F.
①如图2,当点B在点A的左侧时,若∠ABC=50°,∠ADC=60°,求∠BFD的度数.
②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示)
【答案】(1)见解析;(2)55°;(3)
【分析】(1)根据平行线的判定定理与性质定理解答即可;
(2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数;
②如图3,过点作,当点在点的右侧时,,,根据平行线的性质及角平分线的定义即可求出的度数.
【详解】解:(1)如图1,过点作,
则有,
,
,
,
;
(2)①如图2,过点作,
有.
,
.
.
.
即,
平分,平分,
,,
.
答:的度数为;
②如图3,过点作,
有.
,
,
.
.
.
即,
平分,平分,
,,
.
答:的度数为.
【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.
11.如图1,,,,求的度数.小明的思路是:如图2,过作,通过平行线性质可求的度数.
(1)请你按小明的思路,写出度数的求解过程;
(2)如图3,,点在直线上运动,记,.
①当点在线段上运动时,则与、之间有何数量关系?请说明理由;
②若点不在线段上运动时,请直接写出与、之间的数量关系.
【答案】(1)见解析;(2)①,见解析;②
【分析】(1)过作,利用平行线的性质即可得出答案;
(2)①过作,再利用平行线的性质即可得出答案;②分在延长线上和在延长线上两种情况进行讨论,结合平行线的性质即可得出答案
【详解】解:(1)如图2,过作
,
,
,
,
,,
,,
.
(2)①、,
理由:如图3,过作,
,
,
,,
;
②、.
如备用图1,当在延长线上时,;
理由:如备用图1,过作,
,
,
,,
;
如备用图2所示,当在延长线上时,;
理由:如备用图2,过P作,
,
,
,,
;
综上所述,.
【点睛】本题考查的是平行线的性质,解题的关键是过作.
12.如图1,点、分别在直线、上,,.
(1)求证:;(提示:可延长交于点进行证明)
(2)如图2,平分,平分,若,求与之间的数量关系;
(3)在(2)的条件下,如图3,平分,点在射线上,,若,直接写出的度数.
【答案】(1)见解析;(2),见解析;(3)或.
【分析】(1)根据平行线的判定与性质求证即可;
(2)根据三角形的内角和为180°和平角定义得到,结合平行线的性质得到,再根据角平分线的定义证得,结合已知即可得出结论;
(3)分当在直线下方和当在直线上方两种情况,根据平行线性质、三角形外角性质、角平分线定义求解即可.
【详解】解:(1)如图1,延长交于点,
∵,
∴,
∴,
∵,
∴,
∴;
(2)延长交于点,交于点,
∵,,
∴,
∵,
∴,
∴,
∵平分,平分,
∴,,
∴,
∵,,
∴;
(3)当在直线下方时,如图,设射线交于,
∵,
∴,
∵平分,
∴,
∴,
∵,,
∴,
∵,,
∴,
即,
解得:.
当在直线上方时,如图,同理可证得,
则有,
解得:.
综上,故答案为或.
【点睛】本题考查平行线的判定与性质、角平分线的定义、三角形的外角性质、三角形的内角和定理、平角定义、角度的运算,熟练掌握相关知识的联系与运用是解答的关键.
13.已知AB∥CD,线段EF分别与AB,CD相交于点E,F.
(1)请在横线上填上合适的内容,完成下面的解答:
如图1,当点P在线段EF上时,已知∠A=35°,∠C=62°,求∠APC的度数;
解:过点P作直线PH∥AB,
所以∠A=∠APH,依据是 ;
因为AB∥CD,PH∥AB,
所以PH∥CD,依据是 ;
所以∠C=( ),
所以∠APC=( )+( )=∠A+∠C=97°.
(2)当点P,Q在线段EF上移动时(不包括E,F两点):
①如图2,∠APQ+∠PQC=∠A+∠C+180°成立吗?请说明理由;
②如图3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,请直接写出∠M,∠A与∠C的数量关系.
【答案】(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°.
【分析】(1)根据平行线的判定与性质即可完成填空;
(2)结合(1)的辅助线方法即可完成证明;
(3)结合(1)(2)的方法,根据∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可证明∠PMQ,∠A与∠C的数量关系.
【详解】解:过点P作直线PH∥AB,
所以∠A=∠APH,依据是两直线平行,内错角相等;
因为AB∥CD,PH∥AB,
所以PH∥CD,依据是平行于同一条直线的两条直线平行;
所以∠C=(∠CPH),
所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°.
故答案为:两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;
(2)①如图2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下:
过点P作直线PH∥AB,QG∥AB,
∵AB∥CD,
∴AB∥CD∥PH∥QG,
∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,
∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°.
∴∠APQ+∠PQC=∠A+∠C+180°成立;
②如图3,
过点P作直线PH∥AB,QG∥AB,MN∥AB,
∵AB∥CD,
∴AB∥CD∥PH∥QG∥MN,
∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN,
∴∠PMQ=∠HPM+∠GQM,
∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,
∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ),
∴3∠PMQ+∠A+∠C=360°.
【点睛】考核知识点:平行线的判定和性质.熟练运用平行线性质和判定,添加适当辅助线是关键.
14.已知ABCD,∠ABE的角分线与∠CDE的角分线相交于点F.
(1)如图1,若BM、DM分别是∠ABF和∠CDF的角平分线,且∠BED=100°,求∠M的度数;
(2)如图2,若∠ABM=∠ABF,∠CDM=∠CDF,∠BED=α°,求∠M的度数;
(3)若∠ABM=∠ABF,∠CDM=∠CDF,请直接写出∠M与∠BED之间的数量关系.
【答案】(1)65°(2)(3)2n∠M+∠BED=360°
【分析】(1)首先作EGAB,FHAB,利用平行线的性质可得∠ABE+∠CDE=260°,再利用角平分线的定义得到∠ABF+∠CDF=130°,从而得到∠BFD的度数,再根据角平分线的定义可求∠M的度数;
(2)先由已知得到∠ABE=6∠ABM,∠CDE=6∠CDM,由(1)得∠ABE+∠CDE=360°-∠BED,∠M=∠ABM+∠CDM,等量代换即可求解;
(3)先由已知得到,,由(2)的方法可得到2n∠M+∠BED=360°.
【详解】解:(1)如图1,作,,
∵,
∴,
∴,,,,
∴,
∵,
∴,
∵的角平分线和的角平分线相交于F,
∴,
∴,
∵、分别是和的角平分线,
∴,,
∴,
∴;
(2)如图2,∵,,
∴,,
∵与两个角的角平分线相交于点,
∴,,
∴,
∵,
∴,
∴;
(3)∵∠ABM=∠ABF,∠CDM=∠CDF,
∴,,
∵与两个角的角平分线相交于点,
∴,,
∴,
∵,
∴.
【点睛】本题主要考查了平行线的性质和角平分线的计算,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质.
15.如图1,点在直线上,点在直线上,点在,之间,且满足.
(1)证明:;
(2)如图2,若,,点在线段上,连接,且,试判断与的数量关系,并说明理由;
(3)如图3,若(为大于等于的整数),点在线段上,连接,若,则______.
【答案】(1)见解析;(2)见解析;(3)n-1
【分析】(1)连接AB,根据已知证明∠MAB+∠SBA=180°,即可得证;
(2)作CF∥ST,设∠CBT=α,表示出∠CAN,∠ACF,∠BCF,根据AD∥BC,得到∠DAC=120°,求出∠CAE即可得到结论;
(3)作CF∥ST,设∠CBT=β,得到∠CBT=∠BCF=β,分别表示出∠CAN和∠CAE,即可得到比值.
【详解】解:(1)如图,连接,
,
,
,
,
(2),
理由:作,则 如图,
设,则.
,,
,,
.
即.
(3)作,则 如图,设,则.
,
,
,
,
,
故答案为.
【点睛】本题主要考查平行线的性质和判定,解题关键是角度的灵活转换,构建数量关系式.
相关试卷
这是一份专题27 几何体的展开图最新中考真题精练-【微专题】2022-2023学年九年级数学下册常考点微专题提分精练(人教版),文件包含专题27几何体的展开图最新中考真题精练原卷版docx、专题27几何体的展开图最新中考真题精练解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
这是一份专题14 平行线之子弹模型-中考数学压轴大题之经典模型培优案(全国通用),文件包含专题14平行线之子弹模型-中考数学压轴大题之经典模型培优案解析版docx、专题14平行线之子弹模型-中考数学压轴大题之经典模型培优案原卷版docx等2份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。
这是一份专题14 平行线之子弹模型-中考数学压轴大题之经典模型培优案(全国通用),文件包含2写作能力巩固提升演练-高考英语二轮复习讲义+分层训练全国通用docx、1写作类型及其应对策略-高考英语二轮复习讲义+分层训练全国通用docx等2份试卷配套教学资源,其中试卷共88页, 欢迎下载使用。