所属成套资源:人教版2022-2023学年八年级数学上册常考点(数学思想+解题技巧+专项突破+精准提升)
- 第09讲 角平分线常见辅助线的作法(原卷+解析)-2022-2023学年八年级数学上册常考点(数学思想+解题技巧+专项突破+精准提升)(人教版) 试卷 1 次下载
- 第08讲 全等三角形的性质和判定的应用(原卷+解析)-2022-2023学年八年级数学上册常考点(数学思想+解题技巧+专项突破+精准提升)(人教版) 试卷 0 次下载
- 第06讲 全等三角形的基本类型(原卷+解析)-2022-2023学年八年级数学上册常考点(数学思想+解题技巧+专项突破+精准提升) 试卷 0 次下载
- 第05讲 全等三角形的常见辅助线(原卷+解析)-2022-2023学年八年级数学上册常考点(数学思想+解题技巧+专项突破+精准提升) 试卷 0 次下载
- 第4讲 探求多边形边数及角度问题(原卷+解析)-2022-2023学年八年级数学上册常考点(数学思想+解题技巧+专项突破+精准提升)(人教版) 试卷 1 次下载
第07讲 用全等三角形解决三条线段和差问题技巧(原卷版+解析版)-2022-2023学年八年级数学上册常考点(数学思想+解题技巧+专项突破+精准提升)(人教版)
展开
这是一份第07讲 用全等三角形解决三条线段和差问题技巧(原卷版+解析版)-2022-2023学年八年级数学上册常考点(数学思想+解题技巧+专项突破+精准提升)(人教版),共8页。试卷主要包含了等量代换,截长补短,垂直于线段和差,等边三角形与线段和差等内容,欢迎下载使用。
第07讲 用全等三角形解决三条线段和差问题技巧(原卷版)第一部分 典例剖析+针对训练类型一 等量代换名师点金:通过图中线段来代换另一条线段,将线段的和差问题转化为证两线段相等的问题,通过全等得到线段等,直接代换,将分散的线段转化到同一直线上解决问题.典例1 (2021秋•滦州市期中)已知:如图①,点D是等边△ABC中BC边上一点,以AD为一边作等边△ADE,连接CE.(1)求证:AC=CD+CE.(2)直接写出图①中∠BCE的度数 .(3)如图②,AB=AC,AD=AE,∠BAC=∠DAE=α.若∠BCE=β,试着探究α和β之间的关系.(简要说明理由) 典例2(2020秋•兖州区期末)如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A、B重合),BE⊥CD交CD所在的直线于点E,交直线AC于F.(1)点D在边AB上时,证明:AB=FA+BD;(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若成立,请给出证明;若不成立,请画出图形,并直接写出AB,FA,BD三者之间数量关系.
针对训练11.(2019秋•乐昌市期中)如图①,在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,且BD⊥l于的D,CE⊥l于的E.(1)求证:BD+CE=DE;(2)当变换到如图②所示的位置时,试探究BD、CE、DE的数量关系,请说明理由. 类型二 截长补短名师点金:截长:在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;补短:将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段;或者将短线段直接延长至等于长线段。无论截长还是补短都需要将几条线段的和差问题转化为证两条线段相等的问题,一般情况要通过两对全等实现。模型一 角平分线与线段和差类典例3(2012秋•城北区期中)已知,如图,BD是△ABC的角平分线,AB=AC,(1)若BC=AB+AD,请你猜想∠A的度数,并证明;(2)若BC=BA+CD,求∠A的度数?(3)若∠A=100°,求证:BC=BD+DA.针对训练22.(2021春•鄞州区校级期末)如图,△ABC的∠B和∠C的平分线BD,CE相交于点F,∠A=60°,(1)求∠BFC的度数.(2)求证:BC=BE+CD.针对训练33.(2018秋•拱墅区月考)已知四边形ABCD,AB=BC,∠A=∠C=90°,∠ABC=120°,∠MBN=60°,∠MBN绕点B旋转,两边分别交AD,DC(或它们的延长线)于点E、F.(1)当点F在CD,点E在AD上时(如图1),求证:AE+CF=EF.(2)当点F在DC延长线上,点在AD延长线上时(如2),探究AE,CF与EF之间的数量关系,并证明.模型二 倍半角与线段和差典例4(2021秋•顺城区期末)如图,在△ABC中,∠A=2∠B.(1)作∠ACB的角平分线CD,交AB于点D;(要求:尺规作图,保留作图痕迹,不必写作法和证明)(2)求证:BC=AC+AD.模型三 垂直于线段和差典例5(2019秋•义安区期末)如图,在△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,求∠C的度数.针对训练45.(2020秋•西山区期末)如图,在梯形ABCD中,∠A=∠B=90°,点E为AB的中点,DE平分∠ADC.(1)求证:CE平分∠BCD;(2)求证:AD+BC=CD.5.如图,在△ABC中,AB=AC,∠BAC=90°,点D为AC中点,AE⊥BD于点E,交BC于点F,连接DF.求证:BD﹣AF=DF.类型五 等边三角形与线段和差典例6(2021秋•西城区校级期中)已知:如图,在△ABC中,AB=AC,D是△ABC外一点,且∠ABD=60°,∠ACD=60°求证:BD+DC=AB.
第二部分 专题提优训练1.如图,在四边形ABCD中,点E在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE.求证:AD=AE+AB.2.(2019秋•奉化区期末)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE,BE,延长AE交BC的延长线于点F.(1)求证:△DAE≌△CFE;(2)若BE⊥AF,求证:AB=BC+AD.3.(2020秋•北碚区校级期中)如图,在Rt△ACB中,∠ACB=90,∠CBA与∠CAB的平分线相交于点P,延长AP交BC于点D,过点P作PM∥AB交AC于点M,在CM上取点H,使AM=MH,连接HP.(1)求证:HP⊥AD;(2)求证:AH+BD=AB.
4.(2021秋•邵阳县期末)如图,在等腰Rt△ABC中,∠ACB=90°,D是斜边AB上任一点,AE⊥CD于E,BF⊥CD交CD的延长线于F,CH⊥AB于H点,交AE于G.(1)试说明AH=BH;(2)求证:△ACE≌△CBF;(3)探索AE与EF,BF之间的数量关系.5.(2021秋•玉屏县期中)已知:如图△ABC中,∠C=90°,CA=CB,点D是AB的中点.(1)当点E在AC边上,ED⊥DF交BC所在的直线于点F,求证:AE+BF=BC;(2)当E运动到CA的延长线上时,请画出相应的图形并判断(1)中的结论是否成立,若不成立,请写出相应的结论并证明.
6.(2021春•大东区期末)在△ABC中,AB=AC,∠BAC=90°,点D为直线BC上一动点,以AD为直角边在AD的右侧作等腰直角△ADE,使∠DAE=90°,AD=AE.(1)当点D在线段BC上时,如图1,且BD=3时,CE= ;(2)当点D在线段BC的延长线上时,如图2,判断BC,CD,CE三条线段数量关系,并说明理由;(3)当点D在线段CB的延长线上时,直接判断CE与BC的位置关系,并直接写出BC,CD,CE三条线段的数量关系.
相关试卷
这是一份初中数学人教版八年级上册12.1 全等三角形同步测试题,共1页。
这是一份第18讲 几何最值问题专项突破(原卷+解析)-2022-2023学年八年级数学上册常考点(数学思想+解题技巧+专项突破+精准提升)(人教版),文件包含第18讲几何最值问题专项突破解析版-2022-2023学年八年级数学上册常考点数学思想+解题技巧+专项突破+精准提升人教版docx、第18讲几何最值问题专项突破原卷版-2022-2023学年八年级数学上册常考点数学思想+解题技巧+专项突破+精准提升人教版docx等2份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。
这是一份第17讲 图形变换和动态问题中的全等(原卷+解析)-2022-2023学年八年级数学上册常考点(数学思想+解题技巧+专项突破+精准提升)(人教版),文件包含第17讲图形变换和动态问题中的全等解析版-2022-2023学年八年级数学上册常考点数学思想+解题技巧+专项突破+精准提升人教版docx、第17讲图形变换和动态问题中的全等原卷版-2022-2023学年八年级数学上册常考点数学思想+解题技巧+专项突破+精准提升人教版docx等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。