青岛版八年级上册第1章 全等三角形1.2 怎样判定三角形全等精品同步练习题
展开2022-2023年青岛版数学八年级上册1.2
《怎样判定三角形全等》课时练习
一 、选择题
1.下列判断不正确的是( )
A.形状相同的图形是全等图形
B.能够完全重合的两个三角形全等
C.全等图形的形状和大小都相同
D.全等三角形的对应角相等
2.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )
A.150° B.180° C.210° D.225°
3.如图,AB=CD,AB∥CD,判定△ABC≌△CDA的依据是( )
A.SSS B.SAS C.ASA D.HL
4.附图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD与下列哪一个三角形全等?( )
A.△ACF B.△ADE C.△ABC D.△BCF
5.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是( )
A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD
6.在△ABC和△A′B′C′中,AB=A′B′,∠A=∠A′,若证△ABC≌△A′B′C′还要从下列条件中补选一个,错误的选法是( )
A.∠B=∠B′ B.∠C=∠C′ C.BC=B′C′ D.AC=A′C′
7.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是( )
A.带①去 B.带②去 C.带③去 D.带①②③去
8.如图,已知AB=AC,AD=AE,∠BAC=∠DAE.下列结论不正确的有( )
A.∠BAD=∠CAE B.△ABD≌△ACE C.AB=BC D.BD=CE
9.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有( )
A.1对 B.2对 C.3对 D.4对
10.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )
A.1个 B.2个 C.3个 D.4个
二 、填空题
11.小明将一块三角形的玻璃棒摔碎成如图所示的四块(即图中标有1,2,3,4的四块),若只带一块配成原来一样大小的三角形,则应该带第_______块.
12.如图,方格纸中△ABC的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点三角形,图中与△ABC全等的格点三角形共有 个(不含△ABC).
13.如图,坐标平面上,△ABC≌△FDE,若A点的坐标为(a,1),BC∥x轴,B点的坐标为(b,﹣3),D、E两点在y轴上,则F点到y轴的距离为 .
14.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=_______.
15.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出 个.
16.如图,旗杆AC与旗杆BD相距12 m,某人从点B沿BA走向点A,一段时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆AC的高为3 m,该人的运动速度为1 m/s,则这个人运动到点M所用时间是 s.
三 、解答题
17.如图,在△ADF和△BCE中,AF=BE,AC=BD,∠A=∠B,∠B=32°,∠F=28°,BC=5cm,CD=1cm.
求:(1)∠1的度数;(2)AC的长.
18.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.
(1)求证:AC=CD;
(2)若AC=AE,求∠DEC的度数.
19.如图所示,△ADF≌△CBE,且点E,B,D,F在一条直线上.判断AD与BC的位置关系,并加以说明.
20.已知△ABN和△ACM位置如图所示,AB=AC,∠1=∠2,∠M=∠N.求证:AD=AE.
21.如图,已知∠B+∠CDE=180°,AC=CE.求证:AB=DE.
22.如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:
(1)△AEF≌△CEB;
(2)AF=2CD.
参考答案
1.A
2.B
3.B.
4.B.
5.A
6.C
7.C
8.C
9.C.
10.C
11.答案为:2.
12.答案为:7.
13.答案为:4.
14.答案为:90°
15.答案为:4.
16.答案为:3;
17.解:(1)∵AC=BD
∴AD=BC且AF=BE,∠A=∠B
∴△ADF≌△BCE(SAS)
∴∠E=∠F=28°,
∴∠1=∠B+∠E=32°+28°=60°;
(2)∵△ADF≌△BCE
∴AD=BC=5cm,且CD=1cm,
∴AC=AD+CD=6cm.
18.解:∵∠BCE=∠ACD=90°,
∴∠3+∠4=∠4+∠5,
∴∠3=∠5,
在△ACD中,∠ACD=90°,
∴∠2+∠D=90°,
∵∠BAE=∠1+∠2=90°,
∴∠1=∠D,
在△ABC和△DEC中,
∠1=∠D,∠3=∠5,BC=CE,
∴△ABC≌△DEC(AAS),
∴AC=CD;
(2)∵∠ACD=90°,AC=CD,
∴∠2=∠D=45°,
∵AE=AC,
∴∠4=∠6=67.5°,
∴∠DEC=180°-∠6=112.5°.
19.解:AD与BC的位置关系是:AD∥BC.
理由如下:如图,因为△ADF≌△CBE,
所以∠1=∠2,∠F=∠E.
又点E,B,D,F在一条直线上,
所以∠3=∠1+∠F,∠4=∠2+∠E,
即∠3=∠4.所以AD∥BC.
- 证明:∵∠M=∠N, ∴∠MDO=∠NEO,∴∠BDA=∠CEA,
∴在△ABD和△ACE中,
∵ ,
∴△ABD≌△ACE(AAS),∴AD=AE.
21.证明:如图,过E点作EH∥AB交BD的延长线于H,故∠A=∠CEH,
在△ABC与△EHC中,
∴△ABC≌△EHC(ASA),
∴AB=HE,
∵∠B+∠CDE=180°,∠HDE+∠CDE=180°
∴∠HDE=∠B=∠H,
∴DE=HE.
∵AB=HE,
∴AB=DE.
22.(1)证明:由于AB=AC,故△ABC为等腰三角形,∠ABC=∠ACB;
∵AD⊥BC,CE⊥AB,
∴∠AEC=∠BEC=90°,∠ADB=90°;
∴∠BAD+∠ABC=90°,∠ECB+∠ABC=90°,
∴∠BAD=∠ECB,
在Rt△AEF和Rt△CEB中
∠AEF=∠CEB,AE=CE,∠EAF=∠ECB,
所以△AEF≌△CEB(ASA)
(2)∵△ABC为等腰三角形,AD⊥BC,
故BD=CD,即CB=2CD,
又∵△AEF≌△CEB,
∴AF=CB=2CD.
初中数学青岛版八年级上册1.2 怎样判定三角形全等课堂检测: 这是一份初中数学青岛版八年级上册1.2 怎样判定三角形全等课堂检测,共10页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
青岛版八年级上册1.2 怎样判定三角形全等课时训练: 这是一份青岛版八年级上册1.2 怎样判定三角形全等课时训练,共9页。试卷主要包含了下列判断中错误的是等内容,欢迎下载使用。
青岛版八年级上册4.3 众数精品复习练习题: 这是一份青岛版八年级上册4.3 众数精品复习练习题,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。