2022-2023学年上学期人教版八年级数学期末复习培优练习-第15章+分式(广西中考)
展开这是一份2022-2023学年上学期人教版八年级数学期末复习培优练习-第15章+分式(广西中考),共11页。试卷主要包含了÷,其中x=2021,•,其中x=,先化简,再计算,,其中x=3,,其中a=3等内容,欢迎下载使用。
2022-2023学年上学期人教版八年级数学期末复习培优练习-第15章 分式 解答题(广西中考)
1.(2020•贺州)今年夏天,多地连降大雨,某地因大雨导致山体塌方,致使车辆通行受阻,某工程队紧急抢修,需要爆破作业.现有A,B两种导火索,A种导火索的燃烧速度是B种导火索燃烧速度的,同样燃烧长度为36cm的导火索,A种所需时间比B种多20s.
(1)求A,B两种导火索的燃烧速度分别是多少?
(2)为了安全考虑,工人选燃烧速度慢的导火索进行爆破,一工人点燃导火索后以6m/s的速度跑到距爆破点100m外的安全区,问至少需要该种导火索多长?
2.(2020•百色)先化简,再求值:(﹣)÷,其中x=2021.
3.(2020•广西)先化简,再求值:(+1)•,其中x=.
4.(2020•贵港)在今年新冠肺炎防疫工作中,某公司购买了A、B两种不同型号的口罩,已知A型口罩的单价比B型口罩的单价多1.5元,且用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同.
(1)A、B两种型号口罩的单价各是多少元?
(2)根据疫情发展情况,该公司还需要增加购买一些口罩,增加购买B型口罩数量是A型口罩数量的2倍,若总费用不超过3800元,则增加购买A型口罩的数量最多是多少个?
5.(2020•桂林)某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.
(1)求每副围棋和象棋各是多少元?
(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,则该校最多可再购买多少副围棋?
6.(2020•河池)先化简,再计算:+,其中a=2.
7.(2020•广西)先化简,再求值:÷(x﹣),其中x=3.
8.(2022•柳州)习近平总书记在主持召开中央农村工作会议中指出:“坚持中国人的饭碗任何时候都要牢牢端在自己手中,饭碗主要装中国粮.”某粮食生产基地为了落实习近平总书记的重要讲话精神,积极扩大粮食生产规模,计划投入一笔资金购买甲、乙两种农机具,已知1件甲种农机具比1件乙种农机具多1万元,用15万元购买甲种农机具的数量和用10万元购买乙种农机具的数量相同.
(1)求购买1件甲种农机具和1件乙种农机具各需多少万元?
(2)若该粮食生产基地计划购买甲、乙两种农机具共20件,且购买的总费用不超过46万元,则甲种农机具最多能购买多少件?
9.(2022•河池)先化简,再求值:÷﹣(2a﹣1),其中a=3.
10.(2022•贵港)为了加强学生的体育锻炼,某班计划购买部分绳子和实心球.已知每条绳子的价格比每个实心球的价格少23元,且84元购买绳子的数量与360元购买实心球的数量相同.
(1)绳子和实心球的单价各是多少元?
(2)如果本次购买的总费用为510元,且购买绳子的数量是实心球数量的3倍,那么购买绳子和实心球的数量各是多少?
11.(2022•梧州)解方程:1﹣=.
12.(2022•贺州)解方程:=﹣2.
13.(2022•玉林)解方程:=.
14.(2022•桂林)今年,某市举办了一届主题为“强国复兴有我”的中小学课本剧比赛.某队伍为参赛需租用一批服装,经了解,在甲商店租用服装比在乙商店租用服装每套多10元,用500元在甲商店租用服装的数量与用400元在乙商店租用服装的数量相等.
(1)求在甲,乙两个商店租用的服装每套各多少元?
(2)若租用10套以上服装,甲商店给以每套九折优惠.该参赛队伍准备租用20套服装,请问在哪家商店租用服装的费用较少,并说明理由.
15.(2021•梧州)计算:(x﹣2)2﹣x(x﹣1)+.
16.(2021•梧州)某工厂急需生产一批健身器械共500台,送往销售点出售.当生产150台后,接到通知,要求提前完成任务,因而接下来的时间里每天生产的台数提高到原来的1.4倍,一共用8天刚好完成任务.
(1)原来每天生产健身器械多少台?
(2)运输公司大货车数量不足10辆,小货车数量充足,计划同时使用大、小货车一次完成这批健身器械的运输.已知每辆大货车一次可以运输健身器械50台,每辆车需要费用1500元;每辆小货车一次可以运输健身器械20台,每辆车需要费用800元.在运输总费用不多于16000元的前提下,请写出所有符合题意的运输方案?哪种运输方案的费用最低,最低运输费用是多少?
17.(2021•柳州)解分式方程:=.
18.(2021•广西)解分式方程:=+1.
参考答案与试题解析
1.(2020•贺州)今年夏天,多地连降大雨,某地因大雨导致山体塌方,致使车辆通行受阻,某工程队紧急抢修,需要爆破作业.现有A,B两种导火索,A种导火索的燃烧速度是B种导火索燃烧速度的,同样燃烧长度为36cm的导火索,A种所需时间比B种多20s.
(1)求A,B两种导火索的燃烧速度分别是多少?
(2)为了安全考虑,工人选燃烧速度慢的导火索进行爆破,一工人点燃导火索后以6m/s的速度跑到距爆破点100m外的安全区,问至少需要该种导火索多长?
【解答】解:(1)设B、A两种导火索的燃烧速度分别是xcm/s、xcm/s,
由题意得:﹣=20,
解得:x=0.9,
经检验,x=0.9是原方程的解,且符合题意,
则x=0.6,
答:A,B两种导火索的燃烧速度分别是0.6cm/s、0.9cm/s;
(2)设需要该种导火索的长度为ym,
0.6cm=0.006m,
由题意得:6×≥100,
解得:y≥0.1,
答:至少需要该种导火索0.1m.
2.(2020•百色)先化简,再求值:(﹣)÷,其中x=2021.
【解答】解:(﹣)÷
=•
=•
=,
当x=2021时,原式==.
3.(2020•广西)先化简,再求值:(+1)•,其中x=.
【解答】解:原式=•
=•
=,
当x=时,原式==1+.
4.(2020•贵港)在今年新冠肺炎防疫工作中,某公司购买了A、B两种不同型号的口罩,已知A型口罩的单价比B型口罩的单价多1.5元,且用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同.
(1)A、B两种型号口罩的单价各是多少元?
(2)根据疫情发展情况,该公司还需要增加购买一些口罩,增加购买B型口罩数量是A型口罩数量的2倍,若总费用不超过3800元,则增加购买A型口罩的数量最多是多少个?
【解答】解:(1)设A型口罩的单价为x元,则B型口罩的单价为(x﹣1.5)元,
根据题意,得:=.
解方程,得:x=4.
经检验:x=4是原方程的根,且符合题意.
所以x﹣1.5=2.5.
答:A型口罩的单价为4元,则B型口罩的单价为2.5元;
(2)设增加购买A型口罩的数量是m个,
根据题意,得:2.5×2m+4m≤3800.
解不等式,得:m≤422.
因为m为正整数,所以正整数m的最大值为422.
答:增加购买A型口罩的数量最多是422个.
5.(2020•桂林)某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.
(1)求每副围棋和象棋各是多少元?
(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,则该校最多可再购买多少副围棋?
【解答】解:(1)设每副围棋x元,则每副象棋(x﹣8)元,
根据题意,得=.
解得x=18.
经检验x=18是所列方程的根.
所以x﹣8=10.
答:每副围棋18元,则每副象棋10元;
(2)设购买围棋m副,则购买象棋(40﹣m)副,
根据题意,得18m+10(40﹣m)≤600.
解得m≤25.
故m最大值是25.
答:该校最多可再购买25副围棋.
6.(2020•河池)先化简,再计算:+,其中a=2.
【解答】解:原式=+
=+
=,
当a=2时,原式==3.
7.(2020•广西)先化简,再求值:÷(x﹣),其中x=3.
【解答】解:原式=÷(﹣)
=÷
=•
=,
当x=3时,原式==.
8.(2022•柳州)习近平总书记在主持召开中央农村工作会议中指出:“坚持中国人的饭碗任何时候都要牢牢端在自己手中,饭碗主要装中国粮.”某粮食生产基地为了落实习近平总书记的重要讲话精神,积极扩大粮食生产规模,计划投入一笔资金购买甲、乙两种农机具,已知1件甲种农机具比1件乙种农机具多1万元,用15万元购买甲种农机具的数量和用10万元购买乙种农机具的数量相同.
(1)求购买1件甲种农机具和1件乙种农机具各需多少万元?
(2)若该粮食生产基地计划购买甲、乙两种农机具共20件,且购买的总费用不超过46万元,则甲种农机具最多能购买多少件?
【解答】解:(1)设购买1件乙种农机具需要x万元,则购买1件甲种农机具需要(x+1)万元,
依题意得:=,
解得:x=2,
经检验,x=2是原方程的解,且符合题意,
∴x+1=2+1=3.
答:购买1件甲种农机具需要3万元,1件乙种农机具需要2万元.
(2)设购买m件甲种农机具,则购买(20﹣m)件乙种农机具,
依题意得:3m+2(20﹣m)≤46,
解得:m≤6.
答:甲种农机具最多能购买6件.
9.(2022•河池)先化简,再求值:÷﹣(2a﹣1),其中a=3.
【解答】解:原式=×﹣(2a﹣1)
=a﹣2a+1
=﹣a+1,
当a=3时,原式=﹣3+1=﹣2.
10.(2022•贵港)为了加强学生的体育锻炼,某班计划购买部分绳子和实心球.已知每条绳子的价格比每个实心球的价格少23元,且84元购买绳子的数量与360元购买实心球的数量相同.
(1)绳子和实心球的单价各是多少元?
(2)如果本次购买的总费用为510元,且购买绳子的数量是实心球数量的3倍,那么购买绳子和实心球的数量各是多少?
【解答】解:(1)设绳子的单价为x元,则实心球的单价为(x+23)元,
根据题意,得,
解得x=7,
经检验可知x=7是所列分式方程的解,且满足实际意义,
∴x+23=30,
答:绳子的单价为7元,实心球的单价为30元.
(2)设购买实心球的数量为m个,则购买绳子的数量为3m条,
根据题意,得7×3m+30m=510,
解得m=10,
∴3m=30,
答:购买绳子的数量为30条,购买实心球的数量为10个.
11.(2022•梧州)解方程:1﹣=.
【解答】解:去分母得:x﹣3+2=4,
解得:x=5,
当x=5时,x﹣3≠0,
∴x=5是分式方程的根.
12.(2022•贺州)解方程:=﹣2.
【解答】解:方程两边同时乘以最简公分母(x﹣4),
得3﹣x=﹣1﹣2(x﹣4),
去括号,得3﹣x=﹣1﹣2x+8,
解方程,得x=4,
检验:当x=4时,x﹣4=0,
∴x=4不是原方程的解,原分式方程无解.
13.(2022•玉林)解方程:=.
【解答】解:方程两边同乘2(x﹣1),得2x=x﹣1,
解得:x=﹣1,
检验,当x=﹣1时,2(x﹣1)=﹣4≠0,
所以原分式方程的解为x=﹣1.
14.(2022•桂林)今年,某市举办了一届主题为“强国复兴有我”的中小学课本剧比赛.某队伍为参赛需租用一批服装,经了解,在甲商店租用服装比在乙商店租用服装每套多10元,用500元在甲商店租用服装的数量与用400元在乙商店租用服装的数量相等.
(1)求在甲,乙两个商店租用的服装每套各多少元?
(2)若租用10套以上服装,甲商店给以每套九折优惠.该参赛队伍准备租用20套服装,请问在哪家商店租用服装的费用较少,并说明理由.
【解答】解:(1)设乙商店租用服装每套x元,则甲商店租用服装每套(x+10)元,
由题意可得:,
解得:x=40,
经检验,x=40是该分式方程的解,并符合题意,
∴x+10=50,
∴甲,乙两个商店租用的服装每套各50元,40元.
(2)在乙商店租用服装的费用较少.
理由:该参赛队伍准备租用20套服装时,
甲商店的费用为:50×20×0.9=900(元),
乙商店的费用为:40×20=800(元),
∵900>800,
∴乙商店租用服装的费用较少.
15.(2021•梧州)计算:(x﹣2)2﹣x(x﹣1)+.
【解答】解:(x﹣2)2﹣x(x﹣1)+
=x2﹣4x+4﹣x2+x+x﹣4
=﹣2x.
16.(2021•梧州)某工厂急需生产一批健身器械共500台,送往销售点出售.当生产150台后,接到通知,要求提前完成任务,因而接下来的时间里每天生产的台数提高到原来的1.4倍,一共用8天刚好完成任务.
(1)原来每天生产健身器械多少台?
(2)运输公司大货车数量不足10辆,小货车数量充足,计划同时使用大、小货车一次完成这批健身器械的运输.已知每辆大货车一次可以运输健身器械50台,每辆车需要费用1500元;每辆小货车一次可以运输健身器械20台,每辆车需要费用800元.在运输总费用不多于16000元的前提下,请写出所有符合题意的运输方案?哪种运输方案的费用最低,最低运输费用是多少?
【解答】解:(1)设原来每天生产健身器械x台,则提高工作效率后每天生产健身器械1.4x台,
依题意得:+=8,
解得:x=50,
经检验,x=50是原方程的解,且符合题意.
答:原来每天生产健身器械50台.
(2)设使用m辆大货车,使用n辆小货车,
∵同时使用大、小货车一次完成这批健身器械的运输,
∴50m+20n≥500,
∴n≥25﹣m.
又∵运输公司大货车数量不足10辆,且运输总费用不多于16000元,
∴,即,
解得:8≤m<10.
又∵m为整数,
∴m可以为8,9.
当m=8时,n≥25﹣m=25﹣×8=5;
当m=9时,n≥25﹣m=25﹣×9=,
又∵n为整数,
∴n的最小值为3.
∴共有2种运输方案,
方案1:使用8辆大货车,5辆小货车;
方案2:使用9辆大货车,3辆小货车.
方案1所需费用为1500×8+800×5=16000(元),
方案2所需费用为1500×9+800×3=15900(元).
∵16000>15900,
∴运输方案2的费用最低,最低运输费用是15900元.
17.(2021•柳州)解分式方程:=.
【解答】解:去分母得:x+3=2x,
解得:x=3,
检验:当x=3时,x(x+3)≠0,
∴分式方程的解为x=3.
18.(2021•广西)解分式方程:=+1.
【解答】解:去分母得:3x=x+3x+3,
解得:x=﹣3,
检验:当x=﹣3时,3(x+1)≠0,
∴分式方程的解为x=﹣3.
相关试卷
这是一份2022-2023学年上学期人教版八年级数学期末复习培优练习-第15章+分式 选择、填空题(广西中考),共10页。
这是一份2022-2023学年人教版八年级上学期数学期末复习培优练习-第15章分式(青海中考),共7页。试卷主要包含了分解因式,解方程,计算,先化简,再求值等内容,欢迎下载使用。
这是一份2022-2023学年人教版八年级上学期数学期末复习培优练习-第15章+分式+选择、填空题+(辽宁中考),共9页。