所属成套资源:八、九年级数学上学期期末试题汇编
北京市朝阳区3年(2020-2022)八年级数学上学期期末试题汇编-03解答题
展开
这是一份北京市朝阳区3年(2020-2022)八年级数学上学期期末试题汇编-03解答题,共35页。试卷主要包含了计算,已知,求的值,阅读材料等内容,欢迎下载使用。
北京市朝阳区3年(2020-2022)八年级数学上学期期末试题汇编-03解答题
1.(2022·北京朝阳·八年级期末)计算:.
2.(2022·北京朝阳·八年级期末)下面是小军设计的“过线段端点作这条线段的垂线”的尺规作图过程.
已知:线段AB.
求作:AB的垂线,使它经过点A.
作法:如图,
①以点A为圆心,AB长为半径作弧,交线段BA的延长线于点C;
②分别以点B和点C为圆心,大于BC的长为半径作弧,两弧相交于直线BC上方的点D;
③作直线AD.
所以直线AD就是所求作的垂线.
根据小军设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:连接CD,BD.
∵BD= ,AB= ,
∴AD⊥AB( )(填推理的依据).
3.(2022·北京朝阳·八年级期末)如图,点B,F,C,E在一条直线上,AB=DE,∠B=∠E,BF=CE.求证:AC=DF.
4.(2022·北京朝阳·八年级期末)计算:
5.(2022·北京朝阳·八年级期末)已知,求的值.
6.(2022·北京朝阳·八年级期末)人工智能在物流行业有广泛的应用,其中自主移动机器人可以实现高效的搬运和拣货作业. 某物流园区利用A,B两种自主移动机器人搬运化工原料,A型机器人比B型机器人每小时多搬运30kg,A型机器人搬运750kg所用时间与B型机器人搬运600kg所用时间相等,两种机器人每小时分别搬运多少化工原料?
7.(2022·北京朝阳·八年级期末)如图,在△ABC中,点D在AB边上,∠ACD=∠B,CE平分∠BCD,交AB于点E,点F在CE上,连接AF.再从“①AF平分∠BAC,②CF=EF”中选择一个作为已知,另外一个作为结论,组成真命题,并证明.
8.(2022·北京朝阳·八年级期末)阅读材料:
对于两个实数a,b大小的比较,有如下规律:若a-b>0,则a>b;若a-b=0,则a=b;若a-b<0,则a<b. 反过来也成立.
解决问题:
(1)已知实数x,则 (填“<”,“=”或“>”);
(2)甲、乙二人同时从A地出发去B地,甲用一半时间以每小时xkm的速度行走,另一半时间以每小时y km的速度行走;乙以每小时x km的速度行走一半路程,另一半路程以每小时y km的速度行走. 若x≠y,判断谁先到达B地,并说明理由.
下面是小明参考上面的规律解决问题的过程,请补充完整:
(1) (填“<”,“=”或“>”);
(2)先到达B地的是 .
说明:设甲从A地到B地用2th,则A,B两地的路程为(x+y)t km,乙从A地到B地用h.
9.(2022·北京朝阳·八年级期末)在△ABC中,∠ACB=90°,AC=BC,点D在AC边上(不与点A,C重合),连接BD,过点D作DE⊥BD,点E与点A在直线BC的两侧,DE=BD,延长BC至点F,使CF=BC,连接EF.
(1)依题意补全图1;
(2)在点A,B,C,D中,和点F所连线段与DE相等的是点 .
①求∠CFE的度数;
②连接EC并延长,交AB于点M,用等式表示线段EC与MC之间的数量关系,并证明.
10.(2022·北京朝阳·八年级期末)在平面直角坐标系xOy中,对于任意图形G及直线l1,l2,给出如下定义:将图形G先沿直线l1翻折得到图形G1,再将图形G1沿直线l2翻折得到图形G2,则称图形G2是图形G的伴随图形.
例如:点P(2,1)的伴随图形是点P'(-2,-1).
(1)点Q(-3,-2)的伴随图形点Q'的坐标为 ;
(2)已知A(t,1),B(t-3,1),C(t,3),直线m经过点(1,1).
①当t=-1,且直线m与y轴平行时,点A的伴随图形点A'的坐标为 ;
②当直线m经过原点时,若△ABC的伴随图形上只存在两个与x轴的距离为1的点,直接写出t的取值范围.
11.(2020·北京朝阳·八年级期末)计算:.
12.(2020·北京朝阳·八年级期末)计算:.
13.(2020·北京朝阳·八年级期末)解分式方程:.
14.(2020·北京朝阳·八年级期末)已知,求代数式的值.
15.(2020·北京朝阳·八年级期末)如图,在△ABC中,AB>AC>BC,P为BC上一点(不与B,C重合).在AB上找一点M,在AC上找一点N,使得△AMN与△PMN全等,以下是甲、乙两位同学的作法.
甲:连接AP,作线段AP的垂直平分线,分别交AB,AC于M,N两点,则M,N两点即为所求;
乙:过点P作PM∥AC,交AB于点M,过点P作PN∥AB,交AC于点N,则M,N两点即为所求.
(1)对于甲、乙两人的作法,下列判断正确的是 ;
A.两人都正确 B.甲正确,乙错误 C.甲错误,乙正确
(2)选择一种你认为正确的作法,补全图形并证明.
16.(2020·北京朝阳·八年级期末)如图,在△ABC中,AD平分∠BAC,BD⊥AD于点D,过点D作DE∥AC交AB于点E.求证:E为AB的中点.
17.(2020·北京朝阳·八年级期末)2020年12月17日,中国研制的嫦娥五号返回器成功携带月球样品着陆地球,在接近大气层时,它的飞行速度接近第二宇宙速度,约为某列高铁全速行驶速度的112倍.如果以第二宇宙速度飞行560千米所用时间比该列高铁全速行驶10千米所用时间少50秒,那么第二宇宙速度是每秒多少千米?
18.(2020·北京朝阳·八年级期末)已知,,,且m>n>0.
(1)比较a,b,c的大小;
(2)请说明以a,b,c为边长的三角形一定存在.
19.(2020·北京朝阳·八年级期末)在△ABC中,∠C=90°,AC=BC=2,直线BC上有一点P,M,N分别为点P关于直线AB,AC的对称点,连接AM,AN,BM.
(1)如图1,当点P在线段BC上时,求∠MAN和∠MBC的度数;
(2)如图2,当点P在线段BC的延长线上时,
①依题意补全图2;
②探究是否存在点P,使得,若存在,直接写出满足条件时CP的长度;若不存在,说明理由.
20.(2020·北京朝阳·八年级期末)在学习了“等边对等角”定理后,某数学兴趣小组的同学继续探究了同一个三角形中边与角的数量关系,得到了一个正确的结论:“在同一个三角形中,较长的边所对的角较大”,简称:“在同一个三角形中,大边对大角”.即,如图:当 AB>AC时,∠C>∠B.该兴趣小组的同学在此基础上对等腰三角形“三线合一”性质的一般情况,继续进行了深入的探究,请你补充完整:
(1)在△ABC中,AD是BC边上的高线.
①如图1,若AB=AC,则∠BAD=∠CAD;
②如图2,若AB≠AC,当AB>AC时,∠BAD ∠CAD.(填“>”,“”,“
相关试卷
这是一份北京市顺义区3年(2020-2022)八年级数学上学期期末试题汇编-03解答题,共31页。试卷主要包含了计算,已知,解方程,先化简,再求值,列方程解应用题等内容,欢迎下载使用。
这是一份北京市平谷区3年(2020-2022)八年级数学上学期期末试题汇编-03解答题,共29页。试卷主要包含了计算,已知,先化简,再代入求值等内容,欢迎下载使用。
这是一份北京市房山区3年(2020-2022)八年级数学上学期期末试题汇编-03解答题,共32页。试卷主要包含了计算,已知,求代数式的值.,解分式方程,,并画出所有三角形等内容,欢迎下载使用。