2021学年12.2 三角形全等的判定课时练习
展开
这是一份2021学年12.2 三角形全等的判定课时练习,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
《12.2 三角形全等的判定》课时练一、选择题(本大题共10道小题)1. 如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD( )A. ∠B=∠C B. AD=AE C. BD=CE D. BE=CD 2. 如图,小强画了一个与已知△ABC全等的△DEF,他画图的步骤是:(1)画DE=AB;(2)在DE的同旁画∠HDE=∠A,∠GED=∠B,DH,EG相交于点F,小强画图的依据是( )A.ASA B.SAS C.SSS D.AAS 3. 如图所示,已知AB∥DE,点B,E,C,F在同一直线上,AB=DE,BE=CF,∠B=32°,∠A=78°,则∠F等于( )A.55° B.65° C.60° D.70° 4. 如图,李颖同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最合理的办法是带哪块玻璃去( )A.只带① B.只带②C.只带③ D.带①和② 5. 已知△ABC的六个元素,下列甲、乙、丙三个三角形中标出了某些元素,则与△ABC全等的三角形是( )A.只有乙 B.只有丙 C.甲和乙 D.乙和丙 6. 如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是( )A.∠A=∠D B.∠ACB=∠DBCC.AC=DB D.AB=DC 7.在Rt△ABC和Rt△DEF中,∠C=∠F=90°,下列条件不能判定Rt△ABC≌Rt△DEF的是( )A.AC=DF,∠B=∠E B.∠A=∠D,∠B=∠EC.AB=DE,AC=DF D.AB=DE,∠A=∠D
8. 如图,AB⊥BC,BE⊥AC,垂足分别为B,E,∠1=∠2,AD=AB,则下列结论正确的是( )A.∠1=∠EFD B.BE=EC C.BF=CD D.FD∥BC 9. 如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB=,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE等于( )A. B. C. 2 D. 10. 现已知线段a,b(a<b),∠MON=90°,求作Rt△ABO,使得∠O=90°,OA=a,AB=b.小惠和小雷的作法分别如下:小惠:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点A为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.小雷:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点O为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.则下列说法中正确的是 ( )A.小惠的作法正确,小雷的作法错误 B.小雷的作法正确,小惠的作法错误C.两人的作法都正确 D.两人的作法都错误 二、填空题(本大题共7道小题)11. 如图,AB=DE,∠1=∠2,添加一个适当的条件,使△ABC≌△DEC,则需添加的条件是__________(不添加任何辅助线,填一个即可). 12. 如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B,F,C,E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是________(只填一个即可).
13. 如图K-10-10,CA=CD,AB=DE,BC=EC,AC与DE相交于点F,ED与AB相交于点G.若∠ACD=40°,则∠AGD=________°. 14. 如图,在△ABC中,D,E分别是边AB,AC上的点,过点C作平行于AB的直线交DE的延长线于点F.若DE=FE,AB=5,CF=3,则BD的长是________. 15. 如图,若AB=AC,BD=CD,∠A=80°,∠BDC=120°,则∠B=________°. 16. 如图,在Rt△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F.若EF=5 cm,则AE=________cm. 17. 如图,已知△ABC(AC>AB),DE=BC,以D,E为顶点作三角形,使所作的三角形与△ABC全等,则这样的三角形最多可以作出________个. 三、解答题(本大题共4道小题)18. 如图,点B,C分别在∠MAN的边AM,AN上,点E,F在∠MAN内部的射线AD上,∠1,∠2分别是△ABE,△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF. 19. 在四边形ABCD中,AB=AD.(1)如图①,若∠B=∠D=90°,E,F分别是边BC,CD上的点,且∠EAF=∠BAD.请直接写出线段EF,BE,FD之间的数量关系:____________.(2)如图②,若∠B+∠D=180°,E,F分别是边BC,CD上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)如图③,若∠B+∠ADC=180°,E,F分别是边BC,CD延长线上的点,且∠EAF=∠BAD,请直接写出EF,BE,FD三者的数量关系.
20. 如图①,点A,B,C,D在同一直线上,AB=CD,作EC⊥AD于点C,FB⊥AD于点B,且AE=DF.(1)求证:EF平分线段BC;(2)若将△BFD沿AD方向平移得到图②,其他条件不变,(1)中的结论是否仍成立?请说明理由. 21. (1)如图①,在△ABC中,∠BAC=90°,AB=CA,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为D,E.求证:DE=BD+CE.(2)如图②,将(1)中的条件改为:在△ABC中,AB=CA,D,A,E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角,则结论DE=BD+CE是否成立?若成立,请你给出证明;若不成立,请说明理由.
参考答案一、选择题(本大题共10道小题)1.D 2.A 3.D 4.C 5.D 6.C 7.B 8.D 9.B 10.A二、填空题(本大题共7道小题)11.答案不唯一,如∠B=∠E 12.答案不唯一,如AB=DE13.4014.215.2016.317.4三、解答题(本大题共4道小题)18.证明:∵∠1=∠2=∠BAC,且∠1=∠BAE+∠ABE,∠2=∠CAF+∠ACF,∠BAC=∠BAE+∠CAF,∴∠BAE=∠ACF,∠ABE=∠CAF.在△ABE和△CAF中,∴△ABE≌△CAF(ASA). 19.解:(1)EF=BE+FD(2)(1)中的结论EF=BE+FD仍然成立.证明:如图,延长EB到点G,使BG=DF,连接AG.∵∠ABC+∠D=180°,∠ABG+∠ABC=180°,∴∠ABG=∠D.在△ABG与△ADF中,∴△ABG≌△ADF(SAS).∴AG=AF,∠1=∠2.∴∠1+∠3=∠2+∠3=∠BAD-∠EAF.又∵∠EAF=∠BAD,∴∠1+∠3=∠BAD=∠EAF,即∠EAG=∠EAF.在△AEG和△AEF中,∴△AEG≌△AEF.∴EG=EF.∵EG=BE+BG,∴EF=BE+FD.(3)EF=BE-FD.20.解:(1)证明:∵EC⊥AD,FB⊥AD,∴∠ACE=∠DBF=90°.∵AB=CD,∴AB+BC=BC+CD,即AC=DB.在Rt△ACE和Rt△DBF中,∴Rt△ACE≌Rt△DBF(HL).∴EC=FB.在△CEG和△BFG中,∴△CEG≌△BFG(AAS).∴CG=BG,即EF平分线段BC.(2)EF平分线段BC仍成立.理由:∵EC⊥AD,FB⊥AD,∴∠ACE=∠DBF=90°.∵AB=CD,∴AB-BC=CD-BC,即AC=DB.在Rt△ACE和Rt△DBF中,∴Rt△ACE≌Rt△DBF(HL).∴EC=FB.在△CEG和△BFG中,∴△CEG≌△BFG(AAS).∴CG=BG,即EF平分线段BC. 21.解:(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠AEC=90°.∴∠BAD+∠ABD=90°.∵∠BAC=90°,∴∠BAD+∠CAE=90°.∴∠CAE=∠ABD.在△ADB和△CEA中,∴△ADB≌△CEA(AAS).∴BD=AE,AD=CE.∴DE=AE+AD=BD+CE.(2)成立.证明:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠EAC=180°-α.∴∠DBA=∠EAC.在△ADB和△CEA中,∴△ADB≌△CEA(AAS).∴BD=AE,AD=CE.∴DE=AE+AD=BD+CE.
相关试卷
这是一份初中数学人教版八年级上册12.2 三角形全等的判定随堂练习题,共6页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份数学八年级上册12.2 三角形全等的判定课后测评,共4页。试卷主要包含了如图,尺规作的平分线方法如下,如图,D是上的一点,交于点,5B,如图,已知和,,,等内容,欢迎下载使用。
这是一份初中数学12.2 三角形全等的判定综合训练题,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。