终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    浙江省湖州市2018-2022中考数学真题汇编-06解答题提升题

    立即下载
    加入资料篮
    浙江省湖州市2018-2022中考数学真题汇编-06解答题提升题第1页
    浙江省湖州市2018-2022中考数学真题汇编-06解答题提升题第2页
    浙江省湖州市2018-2022中考数学真题汇编-06解答题提升题第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省湖州市2018-2022中考数学真题汇编-06解答题提升题

    展开

    这是一份浙江省湖州市2018-2022中考数学真题汇编-06解答题提升题,共25页。试卷主要包含了76万人.,2,x2=﹣2,6万元.等内容,欢迎下载使用。
    浙江省湖州市2018-2022中考数学真题汇编-06解答题提升题

    一.解答题
    1. (2022•湖州)如图1,已知在平面直角坐标系xOy中,四边形OABC是边长为3的正方形,其中顶点A,C分别在x轴的正半轴和y轴的正半轴上.抛物线y=﹣x2+bx+c经过A,C两点,与x轴交于另一个点D.
    (1)①求点A,B,C的坐标;
    ②求b,c的值.
    (2)若点P是边BC上的一个动点,连结AP,过点P作PM⊥AP,交y轴于点M(如图2所示).当点P在BC上运动时,点M也随之运动.设BP=m,CM=n,试用含m的代数式表示n,并求出n的最大值.

    2. (2021•湖州)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.
    (1)求四月和五月这两个月中该景区游客人数平均每月增长百分之几;
    (2)若该景区仅有A,B两个景点,售票处出示的三种购票方式如下表所示:
    购票方式



    可游玩景点
    A
    B
    A和B
    门票价格
    100元/人
    80元/人
    160元/人
    据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万,并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.
    ①若丙种门票价格下降10元,求景区六月份的门票总收入;
    ②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?
    3. (2020•湖州)如图,已知在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C.过点C的直线CA与抛物线交于另一点A(点A在对称轴左侧),点B在AC的延长线上,连接OA,OB,DA和DB.
    (1)如图1,当AC∥x轴时,
    ①已知点A的坐标是(﹣2,1),求抛物线的解析式;
    ②若四边形AOBD是平行四边形,求证:b2=4c.
    (2)如图2,若b=﹣2,=,是否存在这样的点A,使四边形AOBD是平行四边形?若存在,求出点A的坐标;若不存在,请说明理由.

    4. (2018•湖州)某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A,B,C,D四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如下统计图(不完整).

    (1)求扇形统计图中交通监督所在扇形的圆心角度数;
    (2)求D班选择环境保护的学生人数,并补全折线统计图;
    (3)若该校共有学生2500人,试估计该校选择文明宣传的学生人数.
    5. (2018•湖州)“绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A,B两个果园运送有机化肥,甲、乙两个仓库分别可运出80吨和100吨有机化肥;A,B两个果园分别需用110吨和70吨有机化肥.两个仓库到A,B两个果园的路程如表所示:

    路程(千米)
    甲仓库
    乙仓库
    A果园
    15
    25
    B果园
    20
    20
    设甲仓库运往A果园x吨有机化肥,若汽车每吨每千米的运费为2元,
    (1)根据题意,填写下表.

    运量(吨)
    运费(元)
    甲仓库
    乙仓库
    甲仓库
    乙仓库
    A果园
    x
    110﹣x
    2×15x
    2×25(110﹣x)
    B果园
       
       
       
       
    (2)设总运费为y元,求y关于x的函数表达式,并求当甲仓库运往A果园多少吨有机化肥时,总运费最省?最省的总运费是多少元?
    6. (2020•湖州)已知在△ABC中,AC=BC=m,D是AB边上的一点,将∠B沿着过点D的直线折叠,使点B落在AC边的点P处(不与点A,C重合),折痕交BC边于点E.
    (1)特例感知 如图1,若∠C=60°,D是AB的中点,求证:AP=AC;
    (2)变式求异 如图2,若∠C=90°,m=6,AD=7,过点D作DH⊥AC于点H,求AH和AP的长;
    (3)化归探究 如图3,若m=10,AB=12,且当AD=a时,存在两次不同的折叠,使点B落在AC边上两个不同的位置,请直接写出a的取值范围.

    7. (2019•湖州)已知在平面直角坐标系xOy中,直线l1分别交x轴和y轴于点A(﹣3,0),B(0,3).
    (1)如图1,已知⊙P经过点O,且与直线l1相切于点B,求⊙P的直径长;
    (2)如图2,已知直线l2:y=3x﹣3分别交x轴和y轴于点C和点D,点Q是直线l2上的一个动点,以Q为圆心,2为半径画圆.
    ①当点Q与点C重合时,求证:直线l1与⊙Q相切;
    ②设⊙Q与直线l1相交于M,N两点,连接QM,QN.问:是否存在这样的点Q,使得△QMN是等腰直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.

    8. (2019•湖州)如图1,已知在平面直角坐标系xOy中,四边形OABC是矩形,点A,C分别在x轴和y轴的正半轴上,连接AC,OA=3,tan∠OAC=,D是BC的中点.
    (1)求OC的长和点D的坐标;
    (2)如图2,M是线段OC上的点,OM=OC,点P是线段OM上的一个动点,经过P,D,B三点的抛物线交x轴的正半轴于点E,连接DE交AB于点F.
    ①将△DBF沿DE所在的直线翻折,若点B恰好落在AC上,求此时BF的长和点E的坐标;
    ②以线段DF为边,在DF所在直线的右上方作等边△DFG,当动点P从点O运动到点M时,点G也随之运动,请直接写出点G运动路径的长.

    9. (2018•湖州)已知在Rt△ABC中,∠BAC=90°,AB≥AC,D,E分别为AC,BC边上的点(不包括端点),且==m,连接AE,过点D作DM⊥AE,垂足为点M,延长DM交AB于点F.
    (1)如图1,过点E作EH⊥AB于点H,连接DH.
    ①求证:四边形DHEC是平行四边形;
    ②若m=,求证:AE=DF;
    (2)如图2,若m=,求的值.

    10. (2018•湖州)如图1,在平面直角坐标系xOy中,已知△ABC,∠ABC=90°,顶点A在第一象限,B,C在x轴的正半轴上(C在B的右侧),BC=2,AB=2,△ADC与△ABC关于AC所在的直线对称.
    (1)当OB=2时,求点D的坐标;
    (2)若点A和点D在同一个反比例函数的图象上,求OB的长;
    (3)如图2,将(2)中的四边形ABCD向右平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交于点P.问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.

    参考答案与试题解析
    1. (2022•湖州)如图1,已知在平面直角坐标系xOy中,四边形OABC是边长为3的正方形,其中顶点A,C分别在x轴的正半轴和y轴的正半轴上.抛物线y=﹣x2+bx+c经过A,C两点,与x轴交于另一个点D.
    (1)①求点A,B,C的坐标;
    ②求b,c的值.
    (2)若点P是边BC上的一个动点,连结AP,过点P作PM⊥AP,交y轴于点M(如图2所示).当点P在BC上运动时,点M也随之运动.设BP=m,CM=n,试用含m的代数式表示n,并求出n的最大值.

    【解答】解:(1)①四边形OABC是边长为3的正方形,
    ∴A(3,0),B(3,3),C(0,3);
    ②把A(3,0),C(0,3)代入抛物线y=﹣x2+bx+c中得:,
    解得:;
    (2)∵AP⊥PM,
    ∴∠APM=90°,
    ∴∠APB+∠CPM=90°,
    ∵∠B=∠APB+∠BAP=90°,
    ∴∠BAP=∠CPM,
    ∵∠B=∠PCM=90°,
    ∴△MCP∽△PBA,
    ∴=,即=,
    ∴3n=m(3﹣m),
    ∴n=﹣m2+m=﹣(m﹣)2+(0≤m≤3),
    ∵﹣<0,
    ∴当m=时,n的值最大,最大值是.
    2. (2021•湖州)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.
    (1)求四月和五月这两个月中该景区游客人数平均每月增长百分之几;
    (2)若该景区仅有A,B两个景点,售票处出示的三种购票方式如下表所示:
    购票方式



    可游玩景点
    A
    B
    A和B
    门票价格
    100元/人
    80元/人
    160元/人
    据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万,并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.
    ①若丙种门票价格下降10元,求景区六月份的门票总收入;
    ②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?
    【解答】解:(1)设四月和五月这两个月中该景区游客人数平均每月增长率为x,
    由题意,得4(1+x)2=5.76,
    解这个方程,得x1=0.2,x2=﹣2.2(舍去),
    答:四月和五月这两个月中该景区游客人数平均每月增长率为20%;
    (2)①由题意,得
    100×(2﹣10×0.06)+80×(3﹣10×0.04)+(160﹣10)×(2+10×0.06+10×0.04)=798(万元).
    答:景区六月份的门票总收入为798万元.
    ②设丙种门票价格降低m元,景区六月份的门票总收入为W万元,
    由题意,得
    W=100(2﹣0.06m)+80(3﹣0.04m)+(160﹣m)(2+0.06m+0.04m),
    化简,得W=﹣0.1(m﹣24)2+817.6,
    ∵﹣0.1<0,
    ∴当m=24时,W取最大值,为817.6万元.
    答:当丙种门票价格下降24元时,景区六月份的门票总收入有最大值,最大值是817.6万元.
    3. (2020•湖州)如图,已知在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C.过点C的直线CA与抛物线交于另一点A(点A在对称轴左侧),点B在AC的延长线上,连接OA,OB,DA和DB.
    (1)如图1,当AC∥x轴时,
    ①已知点A的坐标是(﹣2,1),求抛物线的解析式;
    ②若四边形AOBD是平行四边形,求证:b2=4c.
    (2)如图2,若b=﹣2,=,是否存在这样的点A,使四边形AOBD是平行四边形?若存在,求出点A的坐标;若不存在,请说明理由.

    【解答】解:(1)①∵AC∥x轴,点A(﹣2,1),
    ∴C(0,1),
    将点A(﹣2,1),C(0,1)代入抛物线解析式中,得,
    ∴,
    ∴抛物线的解析式为y=﹣x2﹣2x+1;

    ②如图1,过点D作DE⊥x轴于E,交AB于点F,
    ∵AC∥x轴,
    ∴EF=OC=c,
    ∵点D是抛物线的顶点坐标,
    ∴D(,c+),
    ∴DF=DE﹣EF=c+﹣c=,
    ∵四边形AOBD是平行四边形,
    ∴AD=BO,AD∥OB,
    ∴∠DAF=∠OBC,
    ∵∠AFD=∠BCO=90°,
    ∴△AFD≌△BCO(AAS),
    ∴DF=OC,
    ∴=c,
    即b2=4c;

    (2)方法1、如图2,∵b=﹣2.
    ∴抛物线的解析式为y=﹣x2﹣2x+c,
    ∴顶点坐标D(﹣1,c+1),
    假设存在这样的点A使四边形AOBD是平行四边形,
    设点A(m,﹣m2﹣2m+c)(m<0),
    过点D作DE⊥x轴于点E,交AB于F,
    ∴∠AFD=∠EFC=∠BCO,
    ∵四边形AOBD是平行四边形,
    ∴AD=BO,AD∥OB,
    ∴∠DAF=∠OBC,
    ∴△AFD≌△BCO(AAS),
    ∴AF=BC,DF=OC,
    过点A作AM⊥y轴于M,交DE于N,
    ∴DE∥CO,
    ∴△ANF∽△AMC,
    ∴=,
    ∵AM=﹣m,AN=AM﹣NM=﹣m﹣1,
    ∴,
    ∴,
    ∴点A的纵坐标为﹣(﹣)2﹣2×(﹣)+c=c﹣<c,
    ∵AM∥x轴,
    ∴点M的坐标为(0,c﹣),N(﹣1,c﹣),
    ∴CM=c﹣(c﹣)=,
    ∵点D的坐标为(﹣1,c+1),
    ∴DN=(c+1)﹣(c﹣)=,
    ∵DF=OC=c,
    ∴FN=DN﹣DF=﹣c,
    ∵=,
    ∴,
    ∴c=,
    ∴c﹣=,
    ∴点A纵坐标为,
    ∴A(﹣,),
    ∴存在这样的点A,使四边形AOBD是平行四边形.

    方法2、设点B的横坐标为3a,
    ∵,
    ∴A的横坐标为﹣5a,
    ∵b=﹣2.
    ∴抛物线的解析式为y=﹣x2﹣2x+c,
    ∴顶点坐标D的横坐标为﹣1,
    假设四边形AOBD是平行四边形,
    ∴(3a﹣5a)=(﹣1+0),
    ∴a=,
    ∴A(﹣,).


    4. (2018•湖州)某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A,B,C,D四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如下统计图(不完整).

    (1)求扇形统计图中交通监督所在扇形的圆心角度数;
    (2)求D班选择环境保护的学生人数,并补全折线统计图;
    (3)若该校共有学生2500人,试估计该校选择文明宣传的学生人数.
    【解答】解:(1)选择交通监督的人数是:12+15+13+14=54(人),
    选择交通监督的百分比是:×100%=27%,
    扇形统计图中交通监督所在扇形的圆心角度数是:360°×27%=97.2°;

    (2)D班选择环境保护的学生人数是:200×30%﹣15﹣14﹣16=15(人).
    补全折线统计图如图所示;

    (3)2500×(1﹣30%﹣27%﹣5%)=950(人),
    即估计该校选择文明宣传的学生人数是950人.

    5. (2018•湖州)“绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A,B两个果园运送有机化肥,甲、乙两个仓库分别可运出80吨和100吨有机化肥;A,B两个果园分别需用110吨和70吨有机化肥.两个仓库到A,B两个果园的路程如表所示:

    路程(千米)
    甲仓库
    乙仓库
    A果园
    15
    25
    B果园
    20
    20
    设甲仓库运往A果园x吨有机化肥,若汽车每吨每千米的运费为2元,
    (1)根据题意,填写下表.

    运量(吨)
    运费(元)
    甲仓库
    乙仓库
    甲仓库
    乙仓库
    A果园
    x
    110﹣x
    2×15x
    2×25(110﹣x)
    B果园
     80﹣x 
     x﹣10 
     2×20×(80﹣x) 
     2×20×(x﹣10) 
    (2)设总运费为y元,求y关于x的函数表达式,并求当甲仓库运往A果园多少吨有机化肥时,总运费最省?最省的总运费是多少元?
    【解答】解:(1)填表如下:

    运量(吨)
    运费(元)
    甲仓库
    乙仓库
    甲仓库
    乙仓库
    A果园
    x
    110﹣x
    2×15x
    2×25(110﹣x)
    B果园
    80﹣x
    x﹣10
    2×20×(80﹣x)
    2×20×(x﹣10)
    故答案为80﹣x,x﹣10,2×20×(80﹣x),2×20×(x﹣10);

    (2)y=2×15x+2×25×(110﹣x)+2×20×(80﹣x)+2×20×(x﹣10),
    即y关于x的函数表达式为y=﹣20x+8300,
    ∵﹣20<0,且10≤x≤80,
    ∴当x=80时,总运费y最省,此时y最小=﹣20×80+8300=6700.
    故当甲仓库运往A果园80吨有机化肥时,总运费最省,最省的总运费是6700元.
    6. (2020•湖州)已知在△ABC中,AC=BC=m,D是AB边上的一点,将∠B沿着过点D的直线折叠,使点B落在AC边的点P处(不与点A,C重合),折痕交BC边于点E.
    (1)特例感知 如图1,若∠C=60°,D是AB的中点,求证:AP=AC;
    (2)变式求异 如图2,若∠C=90°,m=6,AD=7,过点D作DH⊥AC于点H,求AH和AP的长;
    (3)化归探究 如图3,若m=10,AB=12,且当AD=a时,存在两次不同的折叠,使点B落在AC边上两个不同的位置,请直接写出a的取值范围.

    【解答】(1)证明:∵AC=BC,∠C=60°,
    ∴△ABC是等边三角形,
    ∴AC=AB,∠A=60°,
    由题意,得DB=DP,DA=DB,
    ∴DA=DP,
    ∴△ADP使得等边三角形,
    ∴AP=AD=AB=AC.

    (2)解:∵AC=BC=6,∠C=90°,
    ∴AB===12,
    ∵DH⊥AC,
    ∴DH∥BC,
    ∴△ADH∽△ABC,
    ∴=,
    ∵AD=7,
    ∴=,
    ∴DH=,
    将∠B沿过点D的直线折叠,
    情形一:当点B落在线段CH上的点P1处时,如图2﹣1中,

    ∵AB=12,
    ∴DP1=DB=AB﹣AD=5,
    ∴HP1===,
    ∴AP1=AH+HP1=4,
    情形二:当点B落在线段AH上的点P2处时,如图2﹣2中,

    同法可证HP2=,
    ∴AP2=AH﹣HP2=3,
    综上所述,满足条件的AP的值为4或3.

    (3)如图3中,过点C作CH⊥AB于H,过点D作DP⊥AC于P.

    ∵CA=CB,CH⊥AB,
    ∴AH=HB=6,
    ∴CH===8,
    当DB=DP时,设BD=PD=x,则AD=12﹣x,
    ∵sinA==,
    ∴=,
    ∴x=,
    ∴AD=AB﹣BD=,
    观察图形可知当6<a<时,存在两次不同的折叠,使点B落在AC边上两个不同的位置.
    7. (2019•湖州)已知在平面直角坐标系xOy中,直线l1分别交x轴和y轴于点A(﹣3,0),B(0,3).
    (1)如图1,已知⊙P经过点O,且与直线l1相切于点B,求⊙P的直径长;
    (2)如图2,已知直线l2:y=3x﹣3分别交x轴和y轴于点C和点D,点Q是直线l2上的一个动点,以Q为圆心,2为半径画圆.
    ①当点Q与点C重合时,求证:直线l1与⊙Q相切;
    ②设⊙Q与直线l1相交于M,N两点,连接QM,QN.问:是否存在这样的点Q,使得△QMN是等腰直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.

    【解答】解:(1)如图1,连接BC,

    ∵∠BOC=90°,∴点P在BC上,
    ∵⊙P与直线l1相切于点B,
    ∴∠ABC=90°,而OA=OB,
    ∴△ABC为等腰直角三角形,
    则⊙P的直径长=BC=AB=3;
    (2)过点作CM⊥AB,

    由直线l2:y=3x﹣3得:点C(1,0),
    则CM=ACsin45°=4×=2=圆的半径,
    故点M是圆与直线l1的切点,
    即:直线l1与⊙Q相切;
    (3)如图3,
    ①当点M、N在两条直线交点的下方时,

    由题意得:MQ=NQ,∠MQN=90°,
    设点Q的坐标为(m,3m﹣3),则点N(m,m+3),
    则NQ=m+3﹣3m+3=2,
    解得:m=3﹣;
    ②当点M、N在两条直线交点的上方时,
    同理可得:m=3;
    故点Q的坐标为(3﹣,6﹣3)或(3+,6+3).
    8. (2019•湖州)如图1,已知在平面直角坐标系xOy中,四边形OABC是矩形,点A,C分别在x轴和y轴的正半轴上,连接AC,OA=3,tan∠OAC=,D是BC的中点.
    (1)求OC的长和点D的坐标;
    (2)如图2,M是线段OC上的点,OM=OC,点P是线段OM上的一个动点,经过P,D,B三点的抛物线交x轴的正半轴于点E,连接DE交AB于点F.
    ①将△DBF沿DE所在的直线翻折,若点B恰好落在AC上,求此时BF的长和点E的坐标;
    ②以线段DF为边,在DF所在直线的右上方作等边△DFG,当动点P从点O运动到点M时,点G也随之运动,请直接写出点G运动路径的长.

    【解答】解:(1)∵OA=3,tan∠OAC==,
    ∴OC=,
    ∵四边形OABC是矩形,
    ∴BC=OA=3,
    ∵D是BC的中点,
    ∴CD=BC=,
    ∴D(,);
    (2)①∵tan∠OAC=,
    ∴∠OAC=30°,
    ∴∠ACB=∠OAC=30°,
    设将△DBF沿DE所在的直线翻折后,点B恰好落在AC上的B'处,
    则DB'=DB=DC,∠BDF=∠B'DF,
    ∴∠DB'C=∠ACB=30°
    ∴∠BDB'=60°,
    ∴∠BDF=∠B'DF=30°,
    ∵∠B=90°,
    ∴BF=BD•tan30°=,
    ∵AB=,
    ∴AF=BF=,
    ∵∠BFD=∠AEF,
    ∴∠B=∠FAE=90°,
    ∴△BFD≌△AFE(ASA),
    ∴AE=BD=,
    ∴OE=OA+AE=,
    ∴点E的坐标(,0);
    ②动点P在点O时,
    ∵抛物线过点P(0,0)、D(,)、B(3,)
    求得此时抛物线解析式为y=﹣x2+x,
    ∴E(,0),
    ∴直线DE:y=﹣x+,
    ∴F1(3,);
    当动点P从点O运动到点M时,
    ∵抛物线过点P(0,)、D(,)、B(3,)
    求得此时抛物线解析式为y=﹣x2+x+,
    ∴E(6,0),
    ∴直线DE:y=﹣x+,
    ∴F2(3,);
    ∴点F运动路径的长为F1F2==,
    如图,当动点P从点O运动到点M时,点F运动到点F',点G也随之运动到G'.
    连接GG'.当点P向点M运动时,抛物线开口变大,F点向上线性移动,所以G也是线性移动.
    即GG'=FF'.

    ∵△DFG、△DF'G'为等边三角形,
    ∴∠GDF=∠G'DF'=60°,DG=DF,DG'=DF',
    ∴∠GDF﹣∠GDF'=∠G'DF'﹣∠GDF',
    即∠G'DG=∠F'DF
    在△DFF'与△DGG'中,

    ∴△DFF'≌△DGG'(SAS),
    ∴GG'=FF'=,
    此时∠FGG′=120°,GG′∥DF,
    ∴点G的运动轨迹是线段GG′,
    ∴G运动路径的长为.
    9. (2018•湖州)已知在Rt△ABC中,∠BAC=90°,AB≥AC,D,E分别为AC,BC边上的点(不包括端点),且==m,连接AE,过点D作DM⊥AE,垂足为点M,延长DM交AB于点F.
    (1)如图1,过点E作EH⊥AB于点H,连接DH.
    ①求证:四边形DHEC是平行四边形;
    ②若m=,求证:AE=DF;
    (2)如图2,若m=,求的值.

    【解答】解:(1)①证明:∵EH⊥AB,∠BAC=90°,
    ∴EH∥CA,
    ∴△BHE∽△BAC,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴HE=DC,
    ∵EH∥DC,
    ∴四边形DHEC是平行四边形;

    ②∵,∠BAC=90°,
    ∴AC=AB,
    ∵,HE=DC,
    ∴HE=DC,
    ∴,
    ∵∠BHE=90°,
    ∴sinB==,
    ∴∠B=45°,
    ∴∠BEH=∠B=45°
    ∴BH=HE,

    ∵HE=DC,
    ∴BH=CD,
    ∴AH=AD,
    ∵DM⊥AE,EH⊥AB,
    ∴∠EHA=∠AMF=90°,
    ∴∠HAE+∠HEA=∠HAE+∠AFM=90°,
    ∴∠HEA=∠AFD,
    ∵∠EHA=∠FAD=90°,
    ∴△HEA≌△AFD,
    ∴AE=DF;

    (2)如图2,过点E作EG⊥AB于G,
    ∵CA⊥AB,
    ∴EG∥CA,
    ∴△EGB∽△CAB,
    ∴,
    ∴,
    ∵,
    ∴EG=CD,
    设EG=CD=3x,AC=3y,
    ∴BE=5x,BC=5y,
    ∴BG=4x,AB=4y,
    ∵∠EGA=∠AMF=90°,
    ∴∠GEA+∠EAG=∠EAG+∠AFM,
    ∴∠AFM=∠AEG,
    ∵∠FAD=∠EGA=90°,
    ∴△FAD∽△EGA,
    ∴=

    10. (2018•湖州)如图1,在平面直角坐标系xOy中,已知△ABC,∠ABC=90°,顶点A在第一象限,B,C在x轴的正半轴上(C在B的右侧),BC=2,AB=2,△ADC与△ABC关于AC所在的直线对称.
    (1)当OB=2时,求点D的坐标;
    (2)若点A和点D在同一个反比例函数的图象上,求OB的长;
    (3)如图2,将(2)中的四边形ABCD向右平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交于点P.问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.

    【解答】解:(1)如图1中,作DE⊥x轴于E.

    ∵∠ABC=90°,
    ∴tan∠ACB==,
    ∴∠ACB=60°,
    根据对称性可知:DC=BC=2,∠ACD=∠ACB=60°,
    ∴∠DCE=60°,
    ∴∠CDE=90°﹣60°=30°,
    ∴CE=1,DE=,
    ∴OE=OB+BC+CE=5,
    ∴点D坐标为(5,).

    (2)设OB=a,则点A的坐标(a,2),
    由题意CE=1.DE=,可得D(3+a,),
    ∵点A、D在同一反比例函数图象上,
    ∴2a=(3+a),
    ∴a=3,
    ∴OB=3.

    (3)存在.理由如下:
    ①如图2中,当点A1在线段CD的延长线上,且PA1∥AD时,∠PA1D=90°.

    在Rt△ADA1中,∵∠DAA1=30°,AD=2,
    ∴AA1==4,
    在Rt△APA1中,∵∠APA1=60°,
    ∴PA=,
    ∴PB=,
    由(2)可知P(3,),
    ∴k=10.

    ②如图2中,由题意D(6,),设P(3,),A1(3+h,2),D1(6+h,),
    则PD2=32+(﹣)2,DA12=(3﹣h)2+()2,PA12=h2+(﹣2)2,
    当∠PA1D=90°时,32+(﹣)2=(3﹣h)2+()2+h2+(﹣2)2,
    又∵(6+h)=3,
    可得k=10,
    当∠PDA1=90°时,同法可得k=12,
    综上所述,k的值为10或12.

    相关试卷

    浙江省温州市五年(2018-2022)中考数学真题分类汇编-06 解答题提升题:

    这是一份浙江省温州市五年(2018-2022)中考数学真题分类汇编-06 解答题提升题,共22页。

    浙江省湖州市2018-2022中考数学真题汇编-04 解答题基础题:

    这是一份浙江省湖州市2018-2022中考数学真题汇编-04 解答题基础题,共15页。试卷主要包含了计算,3+×8,解一元一次不等式组,解分式方程等内容,欢迎下载使用。

    06解答题提升题、压轴题-浙江台州市五年(2018-2022)中考数学真题分类汇编:

    这是一份06解答题提升题、压轴题-浙江台州市五年(2018-2022)中考数学真题分类汇编,共28页。试卷主要包含了提升题,压轴题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map