浙江省湖州市2018-2022中考数学真题汇编-04 解答题基础题
展开
这是一份浙江省湖州市2018-2022中考数学真题汇编-04 解答题基础题,共15页。试卷主要包含了计算,3+×8,解一元一次不等式组,解分式方程等内容,欢迎下载使用。
浙江省湖州市2018-2022中考数学真题汇编-04 解答题基础题 一.解答题1.(2020•湖州)计算:+|﹣1|.2.(2019•湖州)计算:(﹣2)3+×8.3.(2022•湖州)计算:()2+2×(﹣3).4.(2022•湖州)如图,已知在Rt△ABC中,∠C=Rt∠,AB=5,BC=3.求AC的长和sinA的值.5.(2022•湖州)解一元一次不等式组.6.(2022•湖州)为落实“双减”政策,切实减轻学生学业负担,丰富学生课余生活,某校积极开展“五育并举”课外兴趣小组活动,计划成立“爱心传递”、“音乐舞蹈”、“体育运动”、“美工制作”和“劳动体验”五个兴趣小组,要求每位学生都只选其中一个小组.为此,随机抽查了本校各年级部分学生选择兴趣小组的意向,并将抽查结果绘制成如下统计图(不完整). 根据统计图中的信息,解答下列问题:(1)求本次被抽查学生的总人数和扇形统计图中表示“美工制作”的扇形的圆心角度数;(2)将条形统计图补充完整;(3)该校共有1600名学生,根据抽查结果,试估计全校选择“爱心传递”兴趣小组的学生人数.7.(2022•湖州)如图,已知在Rt△ABC中,∠C=Rt∠,D是AB边上一点,以BD为直径的半圆O与边AC相切,切点为E,过点O作OF⊥BC,垂足为F.(1)求证:OF=EC;(2)若∠A=30°,BD=2,求AD的长.8.(2022•湖州)某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/小时,轿车行驶的速度是60千米/小时.(1)求轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB,AB分别表示大巴、轿车离开学校的路程s(千米)与大巴行驶的时间t(小时)的函数关系的图象.试求点B的坐标和AB所在直线的解析式;(3)假设大巴出发a小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a的值.9.(2021•湖州)计算:x(x+2)+(1+x)(1﹣x).10.(2021•湖州)解分式方程:=1.11.(2021•湖州)如图,已知经过原点的抛物线y=2x2+mx与x轴交于另一点A(2,0).(1)求m的值和抛物线顶点M的坐标;(2)求直线AM的解析式.12.(2020•湖州)解不等式组.13.(2020•湖州)为了解学生对网上在线学习效果的满意度,某校设置了:非常满意、满意、基本满意、不满意四个选项,随机抽查了部分学生,要求每名学生都只选其中的一项,并将抽查结果绘制成如图统计图(不完整).请根据图中信息解答下列问题:(1)求被抽查的学生人数,并补全条形统计图;(温馨提示:请画在答题卷相对应的图上)(2)求扇形统计图中表示“满意”的扇形的圆心角度数;(3)若该校共有1000名学生参与网上在线学习,根据抽查结果,试估计该校对学习效果的满意度是“非常满意”或“满意”的学生共有多少人?14.(2020•湖州)如图,已知△ABC是⊙O的内接三角形,AD是⊙O的直径,连接BD,BC平分∠ABD.(1)求证:∠CAD=∠ABC;(2)若AD=6,求的长.15.(2019•湖州)已知抛物线y=2x2﹣4x+c与x轴有两个不同的交点.(1)求c的取值范围;(2)若抛物线y=2x2﹣4x+c经过点A(2,m)和点B(3,n),试比较m与n的大小,并说明理由.16.(2019•湖州)我市自开展“学习新思想,做好接班人”主题阅读活动以来,受到各校的广泛关注和同学们的积极响应,某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成统计图表.某校抽查的学生文章阅读的篇数统计表 文章阅读的篇数/篇34567及以上人数/人2028m1612请根据统计图表中的信息,解答下列问题:(1)求被抽查的学生人数和m的值;(2)求本次抽查的学生文章阅读篇数的中位数和众数;(3)若该校共有800名学生,根据抽查结果,估计该校学生在这一周内文章阅读的篇数为4篇的人数.17.(2019•湖州)如图,已知在△ABC中,D,E,F分别是AB,BC,AC的中点,连接DF,EF,BF.(1)求证:四边形BEFD是平行四边形;(2)若∠AFB=90°,AB=6,求四边形BEFD的周长.18.(2018•湖州)如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连接BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长. 参考答案与试题解析1.(2020•湖州)计算:+|﹣1|.【解答】解:原式=2+﹣1=3﹣1.2.(2019•湖州)计算:(﹣2)3+×8.【解答】解:(﹣2)3+×8=﹣8+4=﹣4;3.(2022•湖州)计算:()2+2×(﹣3).【解答】解:原式=6+(﹣6)=0.4.(2022•湖州)如图,已知在Rt△ABC中,∠C=Rt∠,AB=5,BC=3.求AC的长和sinA的值.【解答】解:∵∠C=Rt∠,AB=5,BC=3,∴AC===4,sinA==.答:AC的长为4,sinA的值为.5.(2022•湖州)解一元一次不等式组.【解答】解:解不等式①得:x<2,解不等式②得:x<1,∴原不等式组的解集为x<1.6.(2022•湖州)为落实“双减”政策,切实减轻学生学业负担,丰富学生课余生活,某校积极开展“五育并举”课外兴趣小组活动,计划成立“爱心传递”、“音乐舞蹈”、“体育运动”、“美工制作”和“劳动体验”五个兴趣小组,要求每位学生都只选其中一个小组.为此,随机抽查了本校各年级部分学生选择兴趣小组的意向,并将抽查结果绘制成如下统计图(不完整). 根据统计图中的信息,解答下列问题:(1)求本次被抽查学生的总人数和扇形统计图中表示“美工制作”的扇形的圆心角度数;(2)将条形统计图补充完整;(3)该校共有1600名学生,根据抽查结果,试估计全校选择“爱心传递”兴趣小组的学生人数.【解答】解:(1)本次被抽查学生的总人数是60÷30%=200(人),扇形统计图中表示“美工制作”的扇形的圆心角度数是=36°;(2)“音乐舞蹈”的人数为200﹣50﹣60﹣20﹣40=30(人),补全条形统计图如下:(3)估计全校选择“爱心传递”兴趣小组的学生人数为=400(人).7.(2022•湖州)如图,已知在Rt△ABC中,∠C=Rt∠,D是AB边上一点,以BD为直径的半圆O与边AC相切,切点为E,过点O作OF⊥BC,垂足为F.(1)求证:OF=EC;(2)若∠A=30°,BD=2,求AD的长.【解答】(1)证明:连接OE,∵AC是⊙O的切线,∴OE⊥AC,∴∠OEC=90°,∵OF⊥BC,∴∠OFC=90°,∴∠OFC=∠C=∠OEC=90°,∴四边形OECF是矩形,∴OF=EC;(2)解:∵BD=2,∴OE=1,∵∠A=30°,OE⊥AC,∴AO=2OE=2,∴AD=AO﹣OD=2﹣1=1.8.(2022•湖州)某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/小时,轿车行驶的速度是60千米/小时.(1)求轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB,AB分别表示大巴、轿车离开学校的路程s(千米)与大巴行驶的时间t(小时)的函数关系的图象.试求点B的坐标和AB所在直线的解析式;(3)假设大巴出发a小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a的值.【解答】解:(1)设轿车出发后x小时追上大巴,依题意得:40(x+1)=60x,解得x=2.∴轿车出发后2小时追上大巴,此时,两车与学校相距60×2=120(千米),答,轿车出发后2小时追上大巴,此时,两车与学校相距120千米; (2)∵轿车出发后2小时追上大巴,此时,两车与学校相距120千米,∴大巴行驶了3小时,∴B(3,120),由图象得A(1,0),设AB所在直线的解析式为y=kt+b,∴,解得,∴AB所在直线的解析式为y=60t﹣60; (3)依题意得:40(a+1.5)=60×1.5,解得a=.∴a的值为.9.(2021•湖州)计算:x(x+2)+(1+x)(1﹣x).【解答】解:原式=x2+2x+1﹣x2=2x+1.10.(2021•湖州)解分式方程:=1.【解答】解:去分母得:2x﹣1=x+3,解得:x=4,当x=4时,x+3≠0,∴分式方程的解为x=4.11.(2021•湖州)如图,已知经过原点的抛物线y=2x2+mx与x轴交于另一点A(2,0).(1)求m的值和抛物线顶点M的坐标;(2)求直线AM的解析式.【解答】解:(1)∵抛物线y=2x2+mx与x轴交于另一点A(2,0),∴2×22+2m=0,∴m=﹣4,∴y=2x2﹣4x=2(x﹣1)2﹣2,∴顶点M的坐标为(1,﹣2),(2)设直线AM的解析式为y=kx+b(k≠0),∵图象过A(2,0),M(1,﹣2),∴,解得,∴直线AM的解析式为y=2x﹣4.12.(2020•湖州)解不等式组.【解答】解:,解不等式①得x<1;解不等式②得x<﹣6.故不等式组的解集为x<﹣6.13.(2020•湖州)为了解学生对网上在线学习效果的满意度,某校设置了:非常满意、满意、基本满意、不满意四个选项,随机抽查了部分学生,要求每名学生都只选其中的一项,并将抽查结果绘制成如图统计图(不完整).请根据图中信息解答下列问题:(1)求被抽查的学生人数,并补全条形统计图;(温馨提示:请画在答题卷相对应的图上)(2)求扇形统计图中表示“满意”的扇形的圆心角度数;(3)若该校共有1000名学生参与网上在线学习,根据抽查结果,试估计该校对学习效果的满意度是“非常满意”或“满意”的学生共有多少人?【解答】解:(1)抽查的学生数:20÷40%=50(人),抽查人数中“基本满意”人数:50﹣20﹣15﹣1=14(人),补全的条形统计图如图所示:(2)360°×=108°,答:扇形统计图中表示“满意”的扇形的圆心角度数为108°;(3)1000×(+)=700(人),答:该校共有1000名学生中“非常满意”或“满意”的约有700人.14.(2020•湖州)如图,已知△ABC是⊙O的内接三角形,AD是⊙O的直径,连接BD,BC平分∠ABD.(1)求证:∠CAD=∠ABC;(2)若AD=6,求的长.【解答】解:(1)∵BC平分∠ABD,∴∠DBC=∠ABC,∵∠CAD=∠DBC,∴∠CAD=∠ABC;(2)∵∠CAD=∠ABC,∴=,∵AD是⊙O的直径,AD=6,∴的长=××π×6=π.15.(2019•湖州)已知抛物线y=2x2﹣4x+c与x轴有两个不同的交点.(1)求c的取值范围;(2)若抛物线y=2x2﹣4x+c经过点A(2,m)和点B(3,n),试比较m与n的大小,并说明理由.【解答】解:(1)∵抛物线y=2x2﹣4x+c与x轴有两个不同的交点,∴Δ=b2﹣4ac=16﹣8c>0,∴c<2;(2)抛物线y=2x2﹣4x+c的对称轴为直线x=1,∴A(2,m)和点B(3,n)都在对称轴的右侧,当x≥1时,y随x的增大而增大,∴m<n;16.(2019•湖州)我市自开展“学习新思想,做好接班人”主题阅读活动以来,受到各校的广泛关注和同学们的积极响应,某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成统计图表.某校抽查的学生文章阅读的篇数统计表 文章阅读的篇数/篇34567及以上人数/人2028m1612请根据统计图表中的信息,解答下列问题:(1)求被抽查的学生人数和m的值;(2)求本次抽查的学生文章阅读篇数的中位数和众数;(3)若该校共有800名学生,根据抽查结果,估计该校学生在这一周内文章阅读的篇数为4篇的人数.【解答】解:(1)16÷16%=100人,m=100﹣20﹣28﹣16﹣12=24,答:被抽查的学生人数100人,m的值为24; (2)将学生阅读篇数从小到大排列处在第50、51位都是5篇,因此中位数是5篇,学生阅读文章篇数出现次数最多的是4篇,出现28次,因此众数是4篇; (3)抽查学生中阅读4篇的有28人,占抽查学生的28%,所以800×28%=224(人),答:估计该校学生在这一周内文章阅读的篇数为4篇的人数有224人.17.(2019•湖州)如图,已知在△ABC中,D,E,F分别是AB,BC,AC的中点,连接DF,EF,BF.(1)求证:四边形BEFD是平行四边形;(2)若∠AFB=90°,AB=6,求四边形BEFD的周长.【解答】(1)证明:∵D,E,F分别是AB,BC,AC的中点,∴DF∥BC,EF∥AB,∴DF∥BE,EF∥BD,∴四边形BEFD是平行四边形;(2)解:∵∠AFB=90°,D是AB的中点,AB=6,∴DF=DB=DA=AB=3,∵四边形BEFD是平行四边形,∴四边形BEFD是菱形,∵DB=3,∴四边形BEFD的周长为12.18.(2018•湖州)如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连接BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.【解答】证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)∵OC⊥AD,∴,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴.
相关试卷
这是一份新疆五年(2018-2022)中考数学卷真题分题型分层汇编-04解答题(基础题),共23页。试卷主要包含了解答题等内容,欢迎下载使用。
这是一份04解答题容易题、基础题-浙江台州市五年(2018-2022)中考数学真题分类汇编,共16页。试卷主要包含了容易题,基础题等内容,欢迎下载使用。
这是一份浙江省湖州市2018-2022中考数学真题汇编-05解答题中档题,共17页。