06解答题压轴题-浙江省丽水市五年(2018-2022)中考数学真题分类汇编
展开
这是一份06解答题压轴题-浙江省丽水市五年(2018-2022)中考数学真题分类汇编,共17页。试卷主要包含了的图象上,且x2﹣x1=3等内容,欢迎下载使用。
06解答题提升题-浙江省丽水市五年(2018-2022)中考数学真题分类汇编
27.(2022•丽水)如图,已知点M(x1,y1),N(x2,y2)在二次函数y=a(x﹣2)2﹣1(a>0)的图象上,且x2﹣x1=3.
(1)若二次函数的图象经过点(3,1).
①求这个二次函数的表达式;
②若y1=y2,求顶点到MN的距离;
(2)当x1≤x≤x2时,二次函数的最大值与最小值的差为1,点M,N在对称轴的异侧,求a的取值范围.
28.(2021•丽水)如图,已知抛物线L:y=x2+bx+c经过点A(0,﹣5),B(5,0).
(1)求b,c的值;
(2)连结AB,交抛物线L的对称轴于点M.
①求点M的坐标;
②将抛物线L向左平移m(m>0)个单位得到抛物线L1.过点M作MN∥y轴,交抛物线L1于点N.P是抛物线L1上一点,横坐标为﹣1,过点P作PE∥x轴,交抛物线L于点E,点E在抛物线L对称轴的右侧.若PE+MN=10,求m的值.
29.(2021•丽水)如图,在菱形ABCD中,∠ABC是锐角,E是BC边上的动点,将射线AE绕点A按逆时针方向旋转,交直线CD于点F.
(1)当AE⊥BC,∠EAF=∠ABC时,
①求证:AE=AF;
②连结BD,EF,若,求的值;
(2)当∠EAF=∠BAD时,延长BC交射线AF于点M,延长DC交射线AE于点N,连结AC,MN,若AB=4,AC=2,则当CE为何值时,△AMN是等腰三角形.
30.(2020•金华)如图,在△ABC中,AB=4,∠B=45°,∠C=60°.
(1)求BC边上的高线长.
(2)点E为线段AB的中点,点F在边AC上,连接EF,沿EF将△AEF折叠得到△PEF.
①如图2,当点P落在BC上时,求∠AEP的度数.
②如图3,连接AP,当PF⊥AC时,求AP的长.
31.(2020•金华)如图,在平面直角坐标系中,已知二次函数y=﹣(x﹣m)2+4图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.
(1)当m=5时,求n的值.
(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.
(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.
32.(2018•金华)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.
33.(2018•金华)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连接AD.已知∠CAD=∠B.
(1)求证:AD是⊙O的切线.
(2)若BC=8,tanB=,求⊙O的半径.
参考答案与试题解析
27.(2022•丽水)如图,已知点M(x1,y1),N(x2,y2)在二次函数y=a(x﹣2)2﹣1(a>0)的图象上,且x2﹣x1=3.
(1)若二次函数的图象经过点(3,1).
①求这个二次函数的表达式;
②若y1=y2,求顶点到MN的距离;
(2)当x1≤x≤x2时,二次函数的最大值与最小值的差为1,点M,N在对称轴的异侧,求a的取值范围.
【解答】解:(1)①∵二次函数y=a(x﹣2)2﹣1(a>0)经过(3,1),
∴1=a﹣1,
∴a=2,
∴二次函数的解析式为y=2(x﹣2)2﹣1;
②∵y1=y2,
∴M,N关于抛物线的对称轴对称,
∵对称轴是直线x=2,且x2﹣x1=3,
∴x1=,x2=,
当x=时,y1=2×(﹣2)2﹣1=,
∴当y1=y2时,顶点到MN的距离=+1=;
(2)若M,N在对称轴的异侧,y1≥y2,
∴x1+3>2,
∴x1>﹣1,
∵x1﹣x2=3,
∴x1≤,
∴﹣1<x1≤,
∵函数的最大值为y1=a(x1﹣2)2﹣1,最小值为﹣1,
∴y﹣(﹣1)=1,
∴a=,
∴≤(x1﹣2)2<9,
∴<a≤.
若M,N在对称轴的异侧,y1≤y2,x1<2,
∵x1>,
∴<x1<2,
∵函数的最大值为y2=a(x2﹣2)2﹣1,最小值为﹣1,
∴y2﹣(﹣1)=1,
∴a=,
∴≤(x1+1)2<9,
∴<a≤.
综上所述,<a≤.
28.(2021•丽水)如图,已知抛物线L:y=x2+bx+c经过点A(0,﹣5),B(5,0).
(1)求b,c的值;
(2)连结AB,交抛物线L的对称轴于点M.
①求点M的坐标;
②将抛物线L向左平移m(m>0)个单位得到抛物线L1.过点M作MN∥y轴,交抛物线L1于点N.P是抛物线L1上一点,横坐标为﹣1,过点P作PE∥x轴,交抛物线L于点E,点E在抛物线L对称轴的右侧.若PE+MN=10,求m的值.
【解答】解:(1)∵抛物线y=x2+bx+c经过点A(0,﹣5)和点B(5,0),
∴,
解得:,
∴b,c的值分别为﹣4,﹣5.
(2)①设直线AB的解析式为y=kx+n(k≠0),
把A(0,﹣5),B(5,0)的坐标分别代入表达式,得,
解得,
∴直线AB的函数表达式为y=x﹣5.
由(1)得,抛物线L的对称轴是直线x=2,
当x=2时,y=x﹣5=﹣3,
∴点M的坐标是(2,﹣3);
②设抛物线L1的表达式为y=(x﹣2+m)2﹣9,
∵MN∥y轴,
∴点N的坐标是(2,m2﹣9),
∵点P的横坐标为﹣1,
∴P点的坐标是(﹣1,m2﹣6m),
设PE交抛物线L1于另一点Q,
∵抛物线L1的对称轴是直线x=2﹣m,PE∥x轴,
∴根据抛物线的对称性,点Q的坐标是(5﹣2m,m2﹣6m),
(Ⅰ)如图1,当点N在点M及下方,即0<m<时,
∴PQ=5﹣2m﹣(﹣1)=6﹣2m,MN=﹣3﹣(m2﹣9)=6﹣m2,
由平移的性质得,QE=m,
∴PE=6﹣2m+m=6﹣m,
∵PE+MN=10,
∴6﹣m+6﹣m2=10,
解得,m1=﹣2(舍去),m2=1,
(Ⅱ)如图2,当点N在点M及上方,点Q在点P及右侧,
即<m<3时,
PE=6﹣m,MN=m2﹣6,
∵PE+MN=10,
∴6﹣m+m2﹣6=10,
解得,m1=(舍去),m2=(舍去).
(Ⅲ)如图3,当点N在M上方,点Q在点P左侧,
即m>3时,PE=m,MN=m2﹣6,
∵PE+MN=10,
∴m+m2﹣6=10,
解得,m1=(舍去),m2=,
综合以上可得m的值是1或.
29.(2021•丽水)如图,在菱形ABCD中,∠ABC是锐角,E是BC边上的动点,将射线AE绕点A按逆时针方向旋转,交直线CD于点F.
(1)当AE⊥BC,∠EAF=∠ABC时,
①求证:AE=AF;
②连结BD,EF,若,求的值;
(2)当∠EAF=∠BAD时,延长BC交射线AF于点M,延长DC交射线AE于点N,连结AC,MN,若AB=4,AC=2,则当CE为何值时,△AMN是等腰三角形.
【解答】(1)①证明:∵四边形ABCD是菱形,
∴AB=AD,∠ABC=∠ADC,AD∥BC,
∵AE⊥BC,
∴AE⊥AD,
∴∠ABE+∠BAE=∠EAF+∠DAF=90°,
∵∠EAF=∠ABC,
∴∠BAE=∠DAF,
∴△ABE≌△ADF(ASA),
∴AE=AF;
②解:连接AC,如图1所示:
∵四边形ABCD是菱形,
∴AB=BC=DC,AC⊥BD,
由①知,△ABE≌△ADF,
∴BE=DF,
∴CE=CF,
∵AE=AF,
∴AC⊥EF,
∴EF∥BD,
∴△CEF∽△CBD,
∴==,
设EC=2a,则AB=BC=5a,BE=3a,
∴AE===4a,
∵=,∠EAF=∠ABC,
∴△AEF∽△BAC,
∴=()2=()2=,
∴==×=;
(2)解:∵四边形ABCD是菱形,
∴∠BAC=∠BAD,
∵∠EAF=∠BAD,
∴∠BAC=∠EAF,
∴∠BAE=∠CAM,
∵AB∥CD,
∴∠BAE=∠ANC,
∴∠ANC=∠CAM,
同理:∠AMC=∠NAC,
∴△MAC∽△ANC,
∴=,
△AMN是等腰三角形有三种情况:
①当AM=AN时,如图2所示:
∵∠ANC=∠CAM,AM=AN,∠AMC=∠NAC,
∴△ANC≌△MAC(ASA),
∴CN=AC=2,
∵AB∥CN,
∴△CEN∽△BEA,
∴===,
∵BC=AB=4,
∴CE=BC=;
②当NA=NM时,如图3所示:
则∠NMA=∠NAM,
∵AB=BC,
∴∠BAC=∠BCA,
∵∠BAC=∠EAF,
∴∠NMA=∠NAM=∠BAC=∠BCA,
∴△ANM∽△ABC,
∴==,
∴==,
∴CN=2AC=4=AB,
∴△CEN≌△BEA(AAS),
∴CE=BE=BC=2;
③当MA=MN时,如图4所示:
则∠MNA=∠MAN=∠BAC=∠BCA,
∴△AMN∽△ABC,
∴===2,
∴CN=AC=1,
∵△CEN∽△BEA,
∴==,
∴CE=BC=;
综上所述,当CE为或2或时,△AMN是等腰三角形.
30.(2020•金华)如图,在△ABC中,AB=4,∠B=45°,∠C=60°.
(1)求BC边上的高线长.
(2)点E为线段AB的中点,点F在边AC上,连接EF,沿EF将△AEF折叠得到△PEF.
①如图2,当点P落在BC上时,求∠AEP的度数.
②如图3,连接AP,当PF⊥AC时,求AP的长.
【解答】解:(1)如图1中,过点A作AD⊥BC于D.
在Rt△ABD中,AD=AB•sin45°=4×=4.
(2)①如图2中,
∵△AEF≌△PEF,
∴AE=EP,
∵AE=EB,
∴BE=EP,
∴∠EPB=∠B=45°,
∴∠PEB=90°,
∴∠AEP=180°﹣90°=90°.
②如图3中,由(1)可知:AC==,
∵PF⊥AC,
∴∠PFA=90°,
∵△AEF≌△PEF,
∴∠AFE=∠PFE=45°,
∴∠AFE=∠B,
∵∠EAF=∠CAB,
∴△AEF∽△ACB,
∴=,即=,
∴AF=2,
在Rt△AFP,AF=FP,
∴AP=AF=2.
方法二:AE=BE=PE可得直角三角形ABP,由PF⊥AC,可得∠AFE=45°,可得∠FAP=45°,即∠PAB=30°. AP=ABcos30°=2.
31.(2020•金华)如图,在平面直角坐标系中,已知二次函数y=﹣(x﹣m)2+4图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.
(1)当m=5时,求n的值.
(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.
(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.
【解答】解:(1)当m=5时,y=﹣(x﹣5)2+4,
当x=1时,n=﹣×42+4=﹣4.
(2)当n=2时,将C(1,2)代入函数表达式y=﹣(x﹣m)2+4,得2=﹣(1﹣m)2+4,
解得m=3或﹣1(舍去),
∴此时抛物线的对称轴x=3,
根据抛物线的对称性可知,当y=2时,x=1或5,
∴x的取值范围为1≤x≤5.
(3)∵点A与点C不重合,
∴m≠1,
∵抛物线的顶点A的坐标是(m,4),
∴抛物线的顶点在直线y=4上,
当x=0时,y=﹣m2+4,
∴点B的坐标为(0,﹣m2+4),
如图,抛物线从图1的位置向左平移到图2的位置前,m逐渐减小,点B沿y轴向上移动,
当点B与O重合时,﹣m2+4=0,
解得m=2或﹣2(不合题意舍去),
当点B与点D重合时,如图2,顶点A也与B,D重合,点B到达最高点,
∴点B(0,4),
∴﹣m2+4=4,解得m=0,
当抛物线从图2的位置继续向左平移时,如图3点B不在线段OD上,
∴B点在线段OD上时,m的取值范围是:0≤m<1或1<m<2.
32.(2018•金华)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.
【解答】解:符合条件的图形如图所示:
33.(2018•金华)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连接AD.已知∠CAD=∠B.
(1)求证:AD是⊙O的切线.
(2)若BC=8,tanB=,求⊙O的半径.
【解答】(1)证明:连接OD,
∵OB=OD,
∴∠3=∠B,
∵∠B=∠1,
∴∠1=∠3,
在Rt△ACD中,∠1+∠2=90°,
∴∠4=180°﹣(∠2+∠3)=90°,
∴OD⊥AD,
则AD为圆O的切线;
(2)设圆O的半径为r,
在Rt△ABC中,AC=BCtanB=4,
根据勾股定理得:AB==4,
∴OA=4﹣r,
在Rt△ACD中,tan∠1=tanB=,
∴CD=ACtan∠1=2,
根据勾股定理得:AD2=AC2+CD2=16+4=20,
在Rt△ADO中,OA2=OD2+AD2,即(4﹣r)2=r2+20,
解得:r=.
相关试卷
这是一份浙江省温州市五年(2018-2022)中考数学真题分类汇编-06 解答题提升题,共22页。
这是一份06解答题提升题、压轴题-浙江台州市五年(2018-2022)中考数学真题分类汇编,共28页。试卷主要包含了提升题,压轴题等内容,欢迎下载使用。
这是一份05解答题提升题-浙江省丽水市五年(2018-2022)中考数学真题分类汇编,共10页。试卷主要包含了的函数图象如图,0﹣4sin45°+|﹣2|,解不等式组等内容,欢迎下载使用。