专题9—几何压轴 2022年内蒙鄂尔多斯中考数学复习专题(无答)
展开1.旋转是一种重要的图形变换,当图形中有一组邻边相等时往往可以通过旋转解决问题.
(1)尝试解决:如图①,在等腰Rt△ABC中,∠BAC=90°,AB=AC,点M是BC上的一点,BM=1cm,CM=2cm,将△ABM绕点A旋转后得到△ACN,连接MN,则AM=__________cm.
(2)类比探究:如图②,在“筝形”四边形ABCD中,AB=AD=a,CB=CD,AB⊥BC于点B,AD⊥CD于点D,点P、Q分别是AB、AD上的点,且∠PCB+∠QCD=∠PCQ,求△APQ的周长.(结果用a表示)
(3)拓展应用:如图③,已知四边形ABCD,AD=CD,∠ADC=60°,∠ABC=75°,AB=2,BC=2,求四边形ABCD的面积.
2.(1)【操作发现】
如图1,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.
①请按要求画图:将△ABC绕点A顺时针方向旋转90°,点B的对应点为点B′,点C的对应点为点C′.连接BB′;
②在①中所画图形中,∠AB′B=______°.
(2)【问题解决】
如图2,在Rt△ABC中,BC=1,∠C=90°,延长CA到D,使CD=1,将斜边AB绕点A顺时针旋转90°到AE,连接DE,求∠ADE的度数.
(3)【拓展延伸】
如图3,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=1,CD=3,AD=kAB(k为常数),求BD的长(用含k的式子表示).
3.(1)【探究发现】
如图1,∠EOF的顶点O在正方形ABCD两条对角线的交点处,∠EOF=90°,将∠EOF绕点O旋转,旋转过程中,∠EOF的两边分别与正方形ABCD的边BC和CD交于点E和点F(点F与点C,D不重合).则CE,CF,BC之间满足的数量关系是_________.
(2)【类比应用】
如图2,若将(1)中的“正方形ABCD”改为“∠BCD=120°的菱形ABCD”,其他条件不变,当∠EOF=60°时,上述结论是否仍然成立?若成立,请给出证明;若不成立,请猜想结论并说明理由.
(3)【拓展延伸】
如图3,∠BOD=120°,OD=,OB=4,OA平分∠BOD,AB=,且OB>2OA,点C是OB上一点,∠CAD=60°,求OC的长.
4.(1)【问题背景】如图①,已知△ABC∽△ADE,请直接写出图中的另外一对相似三角形:_______;
(2)【尝试应用】如图②,在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,求的值和∠DCE的度数;
(3)【拓展创新】如图③,D是△ABC内一点,∠BAD=∠CBD=30°,∠BDC=90°,AB=2,AC=3,请直接写出AD的长.
5.在等腰△ADC和等腰△BEC中,∠ADC=∠BEC=90°,BC<CD,将△BEC绕点C逆时针旋转,连接AB,点O为线段AB的中点,连接DO,EO.
(1)如图1,当点B旋转到CD边上时,请直接写出线段DO与EO的位置关系和数量关系;
(2)如图2,当点B旋转到AC边上时,(1)中的结论是否成立?若成立,请写出证明过程,若不成立,请说明理由;
(3)若BC=4,CD=2,在△BEC绕点C逆时针旋转的过程中,当∠ACB=60°时,请直接写出线段OD的长.
6.综合与实践
问题情境:
如图①,点E为正方形ABCD内一点,∠AEB=90°,将Rt△ABE绕点B按顺时针方向旋转90°,得到△CBE′(点A的对应点为点C).延长AE交CE′于点F,连接DE.
猜想证明:
(1)试判断四边形BE'FE的形状,并说明理由;
(2)如图②,若DA=DE,请猜想线段CF与FE'的数量关系并加以证明;
解决问题:
(3)如图①,若AB=15,CF=3,请直接写出DE的长.
7.【问题发现】如图1,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B、C重合)将线段AD绕点A顺时针旋转90°得到AE,连接EC,则线段BD与CE的数量关系是_________,位置关系是________;
【探究证明】如图2,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,当点C,D,E在同一直线时,BD与CE具有怎样的位置关系,并说明理由;
【拓展延伸】如图3,在Rt△BCD中,∠BCD=90°,BC=2CD=4,将△ACD绕顺时针旋转,点C对应点E,设旋转角∠CAE为α(0°<α<360°),当点C,D,E在同一直线时,画出图形,并求出线段BE的长度.
8.“隐圆”一般有如下呈现方式:定点定长定圆;定弦定角定圆.“隐圆”现身,“圆”来如此简单.
【小试牛刀】如图1,在四边形ABCD中,AB=AC=AD,若∠CAD=70°,则∠DBC=_____度.
【大显身手】如图2,△ACD是等腰直角三角形,∠CAD=90°,过点A的直线a与CD平行,点B是直线a上的一个动点,且∠CBE=90°.
(1)如图①,当BE与AD的交点P在边AD上时,试判断BC,BP的数量关系是__________ ;
(2)如图②,当BE与AD的交点P在AD的延长线上时,上述结论是否成立,请说明理由;
(3)如图③,当BE与AD的交点P在DA的延长线上,且BP=5,AD=8时,求AB的长.
9.(1)问题发现
如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.
填空:
①∠AEB的度数为______;
②线段AD,BE之间的数量关系为_________.
(2)拓展探究
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.
(3)解决问题
如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.
10.如图1,在Rt△OAB中,∠AOB=90°,OA=OB,D为OB边上一点,过D点作DC⊥AB交AB于C,连接AD,E为AD的中点,连接OE、CE.
观察猜想
(1)①OE与CE的数量关系是________;
②∠OEC与∠OAB的数量关系是______;
类比探究
(2)将图1中△BCD绕点B逆时针旋转45°,如图2所示,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
拓展迁移
(3)将△BCD绕点B旋转任意角度,若BD=,OB=3,请直接写出点O、C、B在同一条直线上时OE的长.
11.【问题发现】
(1)若四边形ABCD是菱形,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,如图1,当点E在菱形ABCD内部或边上时,连接CE、CA,则BP与CE有怎样的数量关系?并说明理由;
【类比探究】
(2)若四边形ABCD是正方形,点P是射线BD上一动点,以AP为直角边在AP边的右侧作等腰Rt△APE,其中∠APE=90°,AP=PE,如图2.当点P在对角线BD上,点E恰好在CD边所在直线上时,则BP与CE之间的数量关系?并说明理由;
【拓展延伸】
(3)在(2)的条件下,如图3,在正方形ABCD中,AB=2,当P是对角线BD的延长线上一动点时,连接BE,若BE=6,求△BPE的面积.
12.【方法提炼】
解答几何问题常常需要添辅助线,其中平移图形是重要的添辅助线策略.
【问题情境】
如图1,在正方形ABCD中,E,F,G分别是BC,AB,CD上的点,FG⊥AE于点Q.求证:AE=FG.
小明在分析解题思路时想到了两种平移法:
方法1:平移线段FG使点F与点B重合,构造全等三角形;
方法2:平移线段BC使点B与点F重合,构造全等三角形;
【尝试应用】
(1)请按照小明的思路,选择其中一种方法进行证明;
(2)如图2,正方形网格中,点A,B,C,D为格点,AB交CD于点O.求tan∠AOC的值;
(3)如图3,点P是线段AB上的动点,分别以AP,BP为边在AB的同侧作正方形APCD与正方形PBEF,连接DE分别交线段BC,PC于点M,N.
①求∠DMC的度数;
②连接AC交DE于点H,求的值.
13.(1)【问题探究】
如图1,点E是等边△ABC高AD上的一定点,请在AB上找一点F,使EF=AE,并说明理由;
(2)【问题解决】
如图2,在△ACD中,CO⊥AD,垂足为O,若AD=,AC=2,OC=,点P在OC上,求DP+PC的最小值.
(3)【问题拓展】
如图3,△ABC中,AB=AC=10,tan∠A=2,BE⊥AC于点E,D是线段BE上的一个动点,求CD+BD的最小值.
14.如图1,四边形ABCD是正方形,点E是AB边的中点,以AE为边作正方形AEFG,连接DE,BG.
(1)发现
①线段DE、BG之间的数量关系是______;
②直线DE、BG之间的位置关系是___________.
(2)探究
如图2,将正方形AEFG绕点A逆时针旋转,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(3)应用
如图3,将正方形AEFG绕点A逆时针旋转一周,记直线DE与BG的交点为P,若AB=4,请直接写出点P到CD所在直线距离的最大值和最小值.
15.(1)【操作体验】用一张矩形纸片折等边三角形.
第一步,对折矩形纸片ABCD(AB>BC)(图①),使AB与DC重合,得到折痕EF,把纸片展平(图②).
第二步,如图③,再一次折叠纸片,使点C落在EF上的P处,并使折痕经过点B,得到折痕BG,折出PB,PC,得到△PBC.
请证明△PBC是等边三角形.
(2)【数学思考】
如图④,小明画出了图③的矩形ABCD和等边三角形PBC.他发现,在矩形ABCD中把△PBC经过图形变化,可以得到图⑤中的更大的等边三角形.请描述图形变化的过程.
(3)【问题解决】
已知矩形一边长为3cm,另一边长为a cm.对于每一个确定的a的值,在矩形中都能画出最大的等边三角形.请画出不同情形的示意图,并写出对应的a的取值范围.
16.【问题情景】通过作平行线来实现问题转化是我们常用到的方法.
如图1,在△ABC中,DE∥BC分别交AB于D,交AC于E.已知CD⊥BE,CD=2,BE=4,求BC+DE的值.我们可以过点D作BE的平行线(如图2),也可过点E作CD的平行线解决问题.
【问题解决】(1)请回答:BC+DE的值为__________.
【类比探究】(2)如图3,已知▱ABCD和矩形ABEF,AC与DF交于点G,AC=BF=DF,参考上述思考问题的方法,求∠AGF的度数.
【迁移应用】(3)如图4,已知:AB、CD交于E点,连接AD、BC,AD=3,BC=1.且∠B与∠D互为余角,∠A与∠C互为补角,则∠AED=_________度,若CD=4,求AB的长.
17.情景观察:将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示,将将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.
观察图2可知:与BC相等的线段是_____,∠CAC′=______-°;
问题探究:如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.
拓展延伸:如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H,若AB=kAE、AC=kAF,探究HE与HF之间的数量关系,并说明理由.
18.问题:如图1,在Rt△ABC中,∠ACB=90°,AC=BC,∠DCE=45°,试探究BD、DE、EA满足的等量关系.
[探究发现]
小聪同学利用图形变换,将△CBD绕点C逆时针旋转90°得到△CAF,连接EF,由已知条件易得∠EAF=90°,∠ECF=∠ECA+∠ACF=∠ECA+∠BCD=45°.根据“边角边”,可证△CEF≌______,得EF=ED.在Rt△FAE中,可得AF2+AE2=EF2.由AF=BD,可得BD、DE、AE之间的等量关系是 __________.
[实践运用]
(1)如图2,在正方形ABCD中,△DEF的顶点E、F分别在AB、BC边上,高DG与正方形的边长相等,求∠EDF的度数.
(2)在(1)的条件下,连接AC,分别交DE、DF于点M、N,若AE=4,CF=6,AM=3,运用小聪同学探究的结论,求正方形的边长及MN的长.
19.问题情境:如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N.判断线段DN、MB、EC之间的数量关系,并说明理由.
问题探究:在“问题情境”的基础上.
(1)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求∠AEF的度数;
(2)如图3,当垂足P在正方形ABCD的对角线BD上时,连接AN,将△APN沿着AN翻折,点P落在点P'处,若正方形ABCD的边长为4,AD的中点为S,求P'S的最小值.
问题拓展:如图4,在边长为4的正方形ABCD中,点M、N分别为边AB、CD上的点,将正方形ABCD沿着MN翻折,使得BC的对应边B'C'恰好经过点A,C'N交AD于点F.分别过点A、F作AG⊥MN,FH⊥MN,垂足分别为G、H.若AG=,请直接写出FH的长.
20.定义:如图1,点M、N把线段AB分割成AM、MN和BN,若以AM、MN、BN为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股点.已知点M、N是线段AB的勾股点,若AM=1,MN=2,则BN=______.
(1)【类比探究】如图2,DE是△ABC的中位线,M、N是AB边的勾股点(AM<MN<NB),连接CM、CN分别交DE于点G、H.求证:G、H是线段DE的勾股点.
(2)【知识迁移】如图3,C,D是线段AB的勾股点,以CD为直径画⊙O,P在⊙O上,AC=CP,连接PA,PB,若∠A=2∠B,求∠B的度数.
(3)【拓展应用】如图4,点P(a,b)是反比例函数y=(x>0)上的动点,直线y=-x+2与坐标轴分别交于A、B两点,过点P分别向x、y轴作垂线,垂足为C、D,且交线段AB于E、F.证明:E、F是线段AB的勾股点.
21.(1)【问题情境】
如图①,在Rt△ABC中,∠ACB=90°,AC=BC,点D为AB中点,连结CD,点E为CB上一点,过点E且垂直于DE的直线交AC于点F.易知:BE=CF.(不需证明)
(2)【探索发现】
如图②,在Rt△ABC中,∠ACB=90°,AC=BC,点D为AB中点,连结CD,点E为CB的延长线上一点,过点E且垂直于DE的直线交AC的延长线于点F.
【问题情境】中的结论还成立吗?请说明理由.
(3)【类比迁移】
如图③,在等边△ABC中,AB=4,点D是AB中点,点E是射线AC上一点(不与点A、C重合),将射线DE绕点D逆时针旋转60°交BC于点F.当CF=2CE时,求CE的长.
22.如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC上,点E、F在边AB上,点G在边BC上.
小明的作法
1.如图②,在边AC上取一点D,过点D作DG∥AB交BC于点G.
2.以点D为圆心,DG长为半径画弧,交AB于点E.
3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形.
(1)证明小明所作的四边形DEFG是菱形.
(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.
23.我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”
(1)概念理解:
请你根据上述定义举一个等邻角四边形的例子;
(2)问题探究:
如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连接AC,BD,试探究AC与BD的数量关系,并说明理由;
(3)应用拓展:
如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.
专题3—规律题 2022年内蒙鄂尔多斯中考数学复习专题(无答): 这是一份专题3—规律题 2022年内蒙鄂尔多斯中考数学复习专题(无答),共8页。
专题4—填空题 2022年内蒙鄂尔多斯中考数学复习专题(无答): 这是一份专题4—填空题 2022年内蒙鄂尔多斯中考数学复习专题(无答),共19页。
专题5—反比例函数 2022年内蒙鄂尔多斯中考数学复习专题(无答): 这是一份专题5—反比例函数 2022年内蒙鄂尔多斯中考数学复习专题(无答),共9页。试卷主要包含了如图,已知点A等内容,欢迎下载使用。