所属成套资源:2021-2022学年人教版九年级数学上册难点突破
专题24 二次函数中的圆的综合问题-2021-2022学年九年级数学上册难点突破(人教版)
展开
这是一份专题24 二次函数中的圆的综合问题-2021-2022学年九年级数学上册难点突破(人教版),文件包含专题24二次函数中的圆的综合问题解析版docx、专题24二次函数中的圆的综合问题原卷版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
专题24 二次函数中的圆的综合问题1、如图,抛物线y=ax2﹣2ax+m的图象经过点P(4,5),与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,且S△PAB=10.(1)求抛物线的解析式;(2)在抛物线上是否存在点Q使得△PAQ和△PBQ的面积相等?若存在,求出Q点的坐标,若不存在,请说明理由;(3)过A、P、C三点的圆与抛物线交于另一点D,求出D点坐标及四边形PACD的周长.2、已知抛物线y=x2+mx﹣2m﹣4(m>0).(1)证明:该抛物线与x轴总有两个不同的交点;(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C三点都在⊙P上.①试判断:不论m取任何正数,⊙P是否经过y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;②若点C关于直线x的对称点为点E,点D(0,1),连接BE,BD,DE,△BDE的周长记为l,⊙P的半径记为r,求的值.3、如图,在平面直角坐标系中,为原点,点坐标为,点坐标为,以为直径的圆与轴的负半轴交于点.(1)求图象经过,,三点的抛物线的解析式;(2)设点为所求抛物线的顶点,试判断直线与的关系,并说明理由.4、已知抛物线y=ax2+bx过点A(1,4)、B(﹣3,0),过点A作直线AC∥x轴,交抛物线于另一点C,在x轴上有一点D(4,0),连接CD.(1)求抛物线的表达式;(2)若在抛物线上存在点Q,使得CD平分∠ACQ,请求出点Q的坐标;[来源:学&科&网Z&X&X&K](3)在直线CD的下方的抛物线上取一点N,过点N作NG∥y轴交CD于点G,以NG为直径画圆在直线CD上截得弦GH,问弦GH的最大值是多少?(4)一动点P从C点出发,以每秒1个单位长度的速度沿C﹣A﹣D运动,在线段CD上还有一动点M,问是否存在某一时刻使PM+AM=4?若存在,请直接写出t的值;若不存在,请说明理由.[来源:学_科_网]5、如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.(1)求顶点D的坐标(用含a的代数式表示);(2)若以AD为直径的圆经过点C.①求抛物线的函数关系式;[来源:Zxxk.Com]②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.6、已知二次函数y=-x2+bx+c+1.(1)当b=1时,求这个二次函数的对称轴的方程;(2)若c=-b2-2b,问:b为何值时,二次函数的图象与x轴相切;(3)如图所示,若二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<x2,与y轴的正半轴交于点M,以AB为直径的半圆恰好经过点M,二次函数的对称轴l与x轴,直线BM,直线AM分别相交于点D,E,F,且满足=,求二次函数的表达式.7、如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c与⊙M相交于A,B,C,D四点,其中A,B两点坐标分别为(-1,0),(0,-2),点D在x轴上且AD为⊙M的直径,E是⊙M与y轴的另一个交点,过劣弧上的点F作FH⊥AD于点H,且FH=1.5.(1)求点D的坐标及抛物线的表达式;(2)若P是x轴上的一个动点,试求出△PEF的周长最小时点P的坐标;(3)在抛物线的对称轴上是否存在点Q,使△QCM是等腰三角形?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由.8、如图所示,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(-1,0).(1)求抛物线的表达式;(2)直接写出B,C两点的坐标;[来源:学科网](3)求过O,B,C三点的圆的面积(结果用含π的代数式表示). 9、如图所示,已知抛物线y=ax2+bx+c(a≠0)的图象的顶点坐标是(2,1),并且经过点(4,2).直线y=x+1与抛物线交于B,D两点,以BD为直径作圆,圆心为点C,⊙C与直线m交于对称轴右侧的点M(t,1).直线m上每一点的纵坐标都等于1.(1)求抛物线的表达式;(2)证明:⊙C与x轴相切;(3)过点B作BE⊥m,垂足为E,再过点D作DF⊥m,垂足为F.求BE∶MF的值. 10、如图所示,已知抛物线y=ax2+bx+3(a<0)与x轴交于A(3,0),B两点,与y轴交于点C.抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C点的上方,且CE=.(1)求抛物线的表达式及顶点D的坐标;(2)求证:直线DE是△ACD外接圆的切线;(3)在直线AC上方的抛物线上找一点P,使S△PAC=S△ACD,求点P的坐标;[来源:学科网](4)在坐标轴上找一点M,使以点B,C,M为顶点的三角形与△ACD相似,直接写出点M的坐标.
相关试卷
这是一份专题21 圆性质在二次函数中的综合问题-2021-2022学年九年级数学上册难点突破(人教版),文件包含专题21圆性质在二次函数中的综合问题解析版docx、专题21圆性质在二次函数中的综合问题原卷版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
这是一份专题22 圆位置关系在二次函数中的综合问题-2021-2022学年九年级数学上册难点突破(人教版),文件包含专题22圆位置关系在二次函数中的综合问题解析版docx、专题22圆位置关系在二次函数中的综合问题原卷版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
这是一份专题23 构造圆与隐形圆在二次函数中的综合问题-2021-2022学年九年级数学上册难点突破(人教版),文件包含专题23构造圆与隐形圆在二次函数中的综合问题解析版docx、专题23构造圆与隐形圆在二次函数中的综合问题原卷版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。