所属成套资源:2021-2022学年人教版九年级数学上册难点突破
专题23 构造圆与隐形圆在二次函数中的综合问题-2021-2022学年九年级数学上册难点突破(人教版)
展开这是一份专题23 构造圆与隐形圆在二次函数中的综合问题-2021-2022学年九年级数学上册难点突破(人教版),文件包含专题23构造圆与隐形圆在二次函数中的综合问题解析版docx、专题23构造圆与隐形圆在二次函数中的综合问题原卷版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
专题23 构造圆与隐形圆在二次函数中的综合问题
1、如图,在直角坐标系中,直线y=﹣x﹣1与x轴,y轴的交点分别为A、B,以x=﹣1为对称轴的抛物线y=x2+bx+c与x轴分别交于点A、C,直线x=﹣1与x轴交于点D.
(1)求抛物线的解析式;[来源:学科网]
(2)在线段AB上是否存在一点P,使以A,D,P为顶点的三角形与△AOB相似?若存在,求出点P的坐标;如果不存在,请说明理由;
(3)若点Q在第三象限内,且tan∠AQD=2,线段CQ是否存在最小值,如果存在直接写出最小值;如果不存在,请说明理由.
2、如图,直线y=﹣x+3与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A、B两点,与x轴的另一个交点为C.
(1)求抛物线的解析式;
(2)点P是第一象限抛物线上的点,连接OP交直线AB于点Q.设点P的横坐标为m,PQ与OQ的比值为y,求y与m的关系式,并求出PQ与OQ的比值的最大值;
(3)点D是抛物线对称轴上的一动点,连接OD、CD,设△ODC外接圆的圆心为M,当sin∠ODC的值最大时,求点M的坐标.
3、在平面直角坐标系中,抛物线与轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.
(1)求点B的坐标(用含的式子表示);
(2)求抛物线的对称轴;
(3)已知点,.若抛物线与线段PQ恰有一个公共点,结合函数图象,求的取值范围.
4、如图,抛物线y=ax2+bx+6与x轴交于点A(6,0),B(﹣1,0),与y轴交于点C.
(1)求抛物线的解析式;[来源:学§科§网Z§X§X§K]
(2)若点M为该抛物线对称轴上一点,当CM+BM最小时,求点M的坐标.
(3)抛物线上是否存在点P,使△BCP为等腰三角形?若存在,有几个?并请在图中画出所有符合条件的点P,(保留作图痕迹);若不存在,说明理由.
5、在平面直角坐标系中,二次函数y=ax2+bx﹣8的图象与x轴交于A、B两点,与y轴交于点C,直线y=kx+(k≠0)经过点A,与抛物线交于另一点R,已知OC=2OA,OB=3OA.[来源:Z_xx_k.Com]
(1)求抛物线与直线的解析式;[来源:学科网ZXXK]
(2)如图1,若点P是x轴下方抛物线上一点,过点P做PH⊥AR于点H,过点P做PQ∥x轴交抛物线于点Q,过点P做PH′⊥x轴于点H′,K为直线PH′上一点,且PK=2PQ,点I为第四象限内一点,且在直线PQ上方,连接IP、IQ、IK,记l=PQ,m=IP+IQ+IK,当l取得最大值时,求出点P的坐标,并求出此时m的最小值.
(3)如图2,将点A沿直线AR方向平移13个长度单位到点M,过点M做MN⊥x轴,交抛物线于点N,动点D为x轴上一点,连接MD、DN,再将△MDN沿直线MD翻折为△MDN′(点M、N、D、N′在同一平面内),连接AN、AN′、NN′,当△ANN′为等腰三角形时,请直接写出点D的坐标.
6、如图,在平面直角坐标系xOy中,经过C(1,1)的抛物线y=ax2+bx+c(a>0)顶点为M,与x轴正半轴交于A,B两点.
(1)如图1,连接OC,将线段OC绕点O逆时针旋转使得C落在y轴的正半轴上,求线段OC过的面积;
(2)如图2,延长线段OC至N,使得ON=OC,若∠ONA=∠OBN且tan∠BAM=,求抛物线的解析式;
(3)如图3,已知以直线x=为对称轴的抛物线y=ax2+bx+c交y轴于(0,5),交直线l:y=kx+m(k>0)于C,D两点,若在x轴上有且仅有一点P,使∠CPD=90°,求k的值.
7、如图1,抛物线与y轴交于点C,与x轴交于点A、B(点A在点B左边),O为坐标原点.点D是直线BC上方抛物线上的一个动点,过点D作DE∥x轴交直线BC于点E.点P为∠CAB角平分线上的一动点,过点P作PQ⊥BC于点H,交x轴于点Q;点F是直线BC上的一个动点.
(1)当线段DE的长度最大时,求DF+FQ+PQ的最小值.
(2)如图2,将△BOC沿BC边所在直线翻折,得到△BOC′,点M为直线BO′上一动点,将△AOC绕点O顺时针旋转α度(0°<α<180°)得到△A′OC′,当直线A′C′,直线BO′,直线OM围成的图形是等腰直角三角形时,直接写出该等腰直角三角形的面积.
8、如图,抛物线y=﹣x2+bx+c与x轴交于A、B(A左B右),与y轴交于C,直线y=﹣x+5经过点B、C.
(1)求抛物线的解析式;[来源:Z*xx*k.Com]
(2)点P为第二象限抛物线上一点,设点P横坐标为m,点P到直线BC的距离为d,求d与m的函数解析式;
(3)在(2)的条件下,若∠PCB+∠POB=180°,求d的值.
9、在平面直角坐标系中,对“隔离直线”给出如下定义:点是图形上的任意一点,点是图形上的任意一点,若存在直线:满足且,则称直线:是图形与的“隔离直线”,如图,直线:是函数的图像与正方形的一条“隔离直线”.
(1)在直线①,②,③,④中,是图函数的图像与正方形的“隔离直线”的为 .
(2)如图,第一象限的等腰直角三角形的两腰分别与坐标轴平行,直角顶点的坐标是,⊙O的半径为,是否存在与⊙O的“隔离直线”?若存在,求出此“隔离直线”的表达式:若不存在,请说明理由;
(3)正方形的一边在轴上,其它三边都在轴的左侧,点是此正方形的中心,若存在直线是函数的图像与正方形的“隔离直线”,请直接写出的取值范围.
10、如图,已知直角坐标平面上的,,,且,,.若抛物线经过、两点.
求、的值;
将抛物线向上平移若干个单位得到的新抛物线恰好经过点,求新抛物线的解析式;
设中的新抛物的顶点点,为新抛物线上点至点之间的一点,以点为圆心画图,当与轴和直线都相切时,联结、,求四边形的面积.
相关试卷
这是一份初中数学中考复习专题满分秘籍讲义练习 构造圆与隐形圆在二次函数中的综合问题,共34页。
这是一份专题63 构造圆与隐形圆在二次函数中的综合问题-中考数学重难点专项突破(全国通用),文件包含专题63构造圆与隐形圆在二次函数中的综合问题原卷版docx、专题63构造圆与隐形圆在二次函数中的综合问题解析版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。
这是一份最新中考数学难点突破与经典模型精讲练 专题20 最值问题中的构造圆与隐形圆模型 (全国通用),文件包含专题20最值问题中的构造圆与隐形圆模型原卷版docx、专题20最值问题中的构造圆与隐形圆模型解析版docx等2份试卷配套教学资源,其中试卷共63页, 欢迎下载使用。