所属成套资源:(通用版)中考数学一轮复习练习卷 随堂练习+课后练习(含答案)
(通用版)中考数学一轮复习练习卷3.5《二次函数的综合应用》随堂练习(含答案)
展开
这是一份(通用版)中考数学一轮复习练习卷3.5《二次函数的综合应用》随堂练习(含答案),共21页。试卷主要包含了 已知,1x+3,4,等内容,欢迎下载使用。
1. 如图,对称轴为直线x=-1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(-3,0).
(1)求点B的坐标;
(2)已知a=1,C为抛物线与y轴的交点.
①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;
②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.
2. 已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).
(1)求该抛物线的解析式;
(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ,当△CQE的面积最大时,求点Q的坐标;
(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
3. 如图,已知抛物线y=-x2+2x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,连接BC.
(1)求A、B、C三点的坐标;
(2)若点P为线段BC上的一点(不与B、C重合),PM∥y轴,且PM交抛物线于点M,交x轴于点N,当△BCM的面积最大时,求△BPN的周长;
(3)在(2)的条件下,当△BCM的面积最大时,在抛物线的对称轴上存在点Q,使得△CNQ为直角三角形,求点Q的坐标.
4. )如图,抛物线y=-x2-2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.
(1)求点A、B、C的坐标;
(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;
(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2eq \r(2)DQ,求点F的坐标.
5. 如图,抛物线y=-x2+2x+3与x轴交于A,B两点(点A 在点B的左边),与y轴交于点C.点D和点C关于抛物线的对称轴对称,直线AD与y轴相交于点E.
(1)求直线AD的解析式;
(2)如图①,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH周长的最大值;
(3)点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是以AM为边的矩形,若点T和点Q关于AM所在直线对称,求点T的坐标.
拓展训练
如图①,在平面直角坐标系中,抛物线y=eq \f(1,2)x2-eq \f(2\r(3),3)x-2分别与x轴交于A,B两点,与y轴交于C点,直线EF垂直平分线段BC,分别交BC于点E,y轴于点F,交x轴于D.
(1)判定△ABC的形状;
(2)在线段BC下方的抛物线上有一点P,当△BCP面积最大时,求点P的坐标及△BCP面积的最大值;
(3)如图②,过点E作EH⊥x轴于点H,将△EHD绕点E逆时针旋转一个角度α(0°≤α≤90°),∠DEH的两边分别交线段BO,CO于点T,点K,当△KET为等腰三角形时,求此时KT的值.
命题点2 二次函数的实际应用
6. 某电视机生产厂家去年销往农村的某品牌电视机每台的售价y(元)与月份x之间满足函数关系y=-50x+2600,去年的月销售量p(万台)与月份x之间成一次函数关系,其中两个月的销售情况如下表:
(1)求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?
(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了m%,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m的值(保留一位小数).(参考数据:eq \r(34)≈5.831,eq \r(35)≈5.916,eq \r(37)≈6.083,eq \r(38)≈6.164)
7. 企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理.某企业去年每月的污水量均为12000吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.1至6月,该企业向污水厂输送的污水量y1(吨)与月份x(1≤x≤6,且x取整数)之间满足的函数关系如下表:
7至12月,该企业自身处理的污水量y2(吨)与月份x(7≤x≤12,且x取整数)之间满足二次函数关系式y2=ax2+c,其图象如图所示.1至6月,污水厂处理每吨污水的费用z1(元)与月份x之间满足函数关系式:z1=eq \f(1,2)x,该企业自身处理每吨污水的费用z2(元)与月份x之间满足函数关系式:z2=eq \f(3,4)x-eq \f(1,12)x2;7至12月,污水厂处理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为1.5元.
(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y1,y2与x之间的函数关系式;
(2)请你求出该企业去年哪个月用于污水处理的费用W(元)最多,并求出这个最多费用;
(3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a-30)%.为鼓励节能降耗,减轻企业负担,财政对企业处理污水的费用进行50%的补助.若该企业每月的污水处理费用为18000元,请计算出a的整数值.(参考数据:eq \r(231)≈15.2,eq \r(419)≈20.5,eq \r(809)≈28.4)
答案
1. 解:(1)∵点A(-3,0)与点B关于直线x=-1对称,
∴点B的坐标为(1,0);(2分)
(2)∵a=1,
∴y=x2+bx+c,
∵抛物线过点(-3,0),且对称轴为直线x=-1,
∴eq \b\lc\{(\a\vs4\al\c1(-\f(b,2)=-1,9-3b+c=0)),解得eq \b\lc\{(\a\vs4\al\c1(b=2,c=-3)),
∴抛物线解析式为y=x2+2x-3,
∴点C的坐标为(0,-3),(4分)
①设点P的坐标为(x,y),
由题意得S△BOC=eq \f(1,2)OB·OC=eq \f(1,2)×1×3=eq \f(3,2),
∴S△POC=4S△BOC=4×eq \f(3,2)=6,(6分)
当x>0时,S△POC=eq \f(1,2)OC·x=eq \f(1,2)×3×x=6,
∴x=4,
∴y=42+2×4-3=21;(7分)
当x
相关试卷
这是一份(通用版)中考数学总复习随堂练习12《二次函数》(含答案),共4页。
这是一份(通用版)中考数学一轮复习练习卷8.2《概率》随堂练习(含答案),共16页。
这是一份(通用版)中考数学一轮复习练习卷8.1《统计》随堂练习(含答案),共7页。试卷主要包含了7 B等内容,欢迎下载使用。