冀教版八年级下册第二十一章 一次函数综合与测试巩固练习
展开这是一份冀教版八年级下册第二十一章 一次函数综合与测试巩固练习,共28页。试卷主要包含了直线不经过点,一次函数的大致图象是等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数章节练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,已知直线与轴交于点,与轴交于点,以点为圆心、长为半径画弧,与轴正半轴交于点,则点的坐标为( )
A. B. C. D.
2、甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.
则下列结论:
①A,B两城相距300千米;
②乙车比甲车晚出发1小时,却早到1小时;
③乙车出发后2.5小时追上甲车;
④当甲、乙两车相距50千米时,或.
其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
3、下列图形中,表示一次函数y=mx+n与正比例函数y=﹣mnx(m,n为常数,且mn≠0)的图象不正确的是( )
A. B.
C. D.
4、直线不经过点( )
A.(0,0) B.(﹣2,3) C.(3,﹣2) D.(﹣3,2)
5、下列函数中,y是x的一次函数的是( )
A.y= B.y=﹣3x+1 C.y=2 D.y=x2+1
6、如图,直线y=kx+b与x轴的交点的坐标是(﹣3,0),那么关于x的不等式kx+b>0的解集是( )
A.x>﹣3 B.x<﹣3 C.x>0 D.x<0
7、直线和在同一直角坐标系中的图象可能是( )
A. B.
C. D.
8、一次函数的大致图象是( )
A. B.
C. D.
9、甲、乙两车从城出发前往城,在整个行驶过程中,汽车离开城的距离与行驶时间的函数图象如图所示,下列说法正确的有( )
①甲车的速度为;②乙车用了到达城;③甲车出发时,乙车追上甲车
A.0个 B.1个 C.2个 D.3个
10、小豪骑自行车去位于家正东方向的书店买资料用于自主复习.小豪离家5min后自行车出现故障,小豪立即打电话给爸爸,让爸爸带上工具箱从家里来帮忙维修(小豪和爸爸通话以及爸爸找工具箱的时间忽略不计),同时小豪以原来速度的一半推着自行车继续向书店走去,爸爸接到电话后,立刻出发追赶小豪,追上小豪后,爸爸用2min的时间修好了自行车,并立刻以原速到位于家正西方500m的公司上班,小豪则以原来的骑车速度继续向书店前进,爸爸到达公司时,小豪还没有到达书店.如图是小豪与爸爸的距离y(m)与小豪的出发时间x(min)之向的函数图象,请根据图象判断下列哪一个选项是正确的( )
A.小豪爸爸出发后12min追上小豪 B.小李爸爸的速度为300m/min
C.小豪骑自行车的速度为250m/min D.爸爸到达公司时,小豪距离书店500m
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、正比例函数图像经过点(1,-1),那么k=__________.
2、若点是直线上一点,则m=______.
3、已知点 P(a,b)在一次函数 y=3x-1 的图像上,则 3a-b+1=_________.
4、如图,已知函数y=ax+b和y=kx的图象交于点P,则二元一次方程组的解是________;当ax+b≤kx时,x的取值范围是____________.
5、点,是直线上的两点,则__.(填,或
三、解答题(5小题,每小题10分,共计50分)
1、如图,直线l:与y轴交于点G,直线l上有一动点P,过点P作y轴的平行线PE,过点G作x轴的平行线GE,它们相交于点E.将△PGE沿直线l翻折得到△PGE′,点E的对应点为E′.
(1)如图1,请利用无刻度的直尺和圆规在图1中作出点E的对应点E′;
(2)如图2,当点E的对应点E′落在x轴上时,求点P的坐标;
(3)如图3,直线l上有A,B两点,坐标分别为(-2,-6),(4,6),当点P从点A运动到点B的过程中,点E′也随之运动,请直接写出点E′的运动路径长为____________.
2、国庆期间,小龚自驾游去了离家156千米的月亮湾,如图是小龚离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.
(1)求小龚出发36分钟时,离家的距离;
(2)求出AB段的图象的函数解析式;
(3)若小龚离目的地还有72千米,求小龚行驶了多少小时.
3、某校计划为在校运会上表现突出的12名志愿者每人颁发一件纪念品,李老师前往购买钢笔和笔记本作为纪念品,如果买10支钢笔和2本笔记本,需230元;如果买8支钢笔和4本笔记本,需220元.
(1)求钢笔和笔记本的单价;
(2)售货员提示:当购买的钢笔超过6支时,所有的钢笔打9折.设购买纪念品的总费用为w元,其中钢笔的支数为a.
①当时,求w与a之间的函数关系式;
②李老师购买纪念品一共花了210元钱,他可能购买了多少支钢笔?
4、已知y与x﹣2成正比例,且当x=1时,y=﹣2
(1)求变量y与x的函数关系式;
(2)请在给出的平面直角坐标系中画出此函数的图象;
(3)已知点A在函数y=ax+b的图象上,请直接写出关于x的不等式ax+b>2x﹣4的解集 .
5、已知一次函数y1=ax+b,y2=bx+a(ab≠0,且a≠b).
(1)若y1过点(1,2)与点(2,b﹣a﹣3)求y1的函数表达式;
(2)y1与y2的图象交于点A(m,n),用含a,b的代数式表示n;
(3)设y3=y1﹣y2,y4=y2﹣y1,当y3>y4时,求x的取值范围.
-参考答案-
一、单选题
1、C
【解析】
【分析】
求出点A、点坐标,求出长即可求出点的坐标.
【详解】
解:当x=0时,,点B的坐标为(0,-1);当y=0时,,解得,,点A的坐标为(2,0);
即,,;
以点为圆心、长为半径画弧,与轴正半轴交于点,
故,则,
点C的坐标为;
故选:C
【点睛】
本题考查了一次函数与坐标轴交点坐标和勾股定理,解题关键是求出一次函数与坐标轴交点坐标,利用勾股定理求出线段长.
2、B
【解析】
【分析】
当不动时,距离300千米,就是A,B两地的距离;甲匀速运动,走完全程用时5小时,乙走完全程用时3小时,确定甲,乙的函数解析式,求交点坐标;分甲出发,乙未动,距离为50千米,甲出发,乙出发,且甲在前50距离50千米,甲在后距离50千米,乙到大时距离为50千米四种情形计算即可.
【详解】
∵(0,300)表示不动时,距离300千米,就是A,B两地的距离,
∴①正确;
∵甲匀速运动,走完全程用时5小时,乙走完全程用时3小时,
∴乙车比甲车晚出发1小时,却早到1小时;
∴②正确;
设,
∴300=5m,
解得m=60,
∴;
设,
∴
解得,
∴;
∴
解得t=2.5,
∴2.5-1=1.5,
∴乙车出发后1.5小时追上甲车;
∴③错误;
当乙未出发时,,
解得t=;
当乙出发,且在甲后面时,,
解得t=;
当乙出发,且在甲前面时,,
解得t=;
当乙到大目的地,甲自己行走时,,
解得t=;
∴④错误;
故选B.
【点睛】
本题考查了函数的图像,一次函数的解析式确定,交点的意义,熟练掌握待定系数法,准确捕获图像信息是解题的关键.
3、B
【解析】
【分析】
利用一次函数的性质逐项进行判断即可解答.
【详解】
解:A、由一次函数的图象可知,,故;由正比例函数的图象可知,两结论一致,故本选项不符合题意;
B、由一次函数的图象可知,,故;由正比例函数的图象可知,两结论不一致,故本选项符合题意;
C. 由一次函数的图象可知,,故;由正比例函数的图象可知,两结论一致,故本选项不符合题意;
D. 由一次函数的图象可知,,故;由正比例函数的图象可知,两结论一致,故本选项不符合题意;
故选B.
【点睛】
本题考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数的图象有四种情况:当,函数的图象经过第一、二、三象限;当,函数的图象经过第一、三、四象限;当,函数的图象经过第一、二、四象限;当,函数的图象经过第二、三、四象限.
4、B
【解析】
【分析】
将各点代入函数解析式即可得.
【详解】
解:A、当时,,即经过点,此项不符题意;
B、当时,,即不经过点,此项符合题意;
C、当时,,即经过点,此项不符题意;
D、当时,,即经过点,此项不符题意;
故选:B.
【点睛】
本题考查了正比例函数,熟练掌握正比例函数的图象与性质是解题关键.
5、B
【解析】
【分析】
利用一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断得出答案.
【详解】
解:∵y=不符合一次函数的形式,故不是一次函数,
∴选项A不符合题意;
∵形如y=kx+b(k,b为常数).
∴y=﹣3x+1中,y是x的一次函数.
故选项B符合题意;
∵y=2是常数函数,
∴选项C不符合题意;
∵y=x2+1不符合一次函数的形式,故不是一次函数,
∴选项D不符合题意;
综上,y是x的一次函数的是选项B.
故选:B.
【点睛】
本题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.
6、A
【解析】
【分析】
根据图象直接解答即可.
【详解】
∵直线y=kx+b与x轴交点坐标为(﹣3,0),
∴由图象可知,当x>﹣3时,y>0,
∴不等式kx+b>0的解集是x>﹣3.
故选:A.
【点睛】
此题考查了一次函数图象与不等式的关系,不等式的解集即为一次函数的函数值大于零、等于零或小于零,正确理解二者之间的关系是解题的关键.
7、D
【解析】
【分析】
根据两个解析式中一次项系数的符号相反、常数项的符号相反,结合一次函数的图象与性质即可解决.
【详解】
根据直线和的解析式知,k与-2k符号相反,b与-b符号相反(由图知b≠0);
A选项中的直线与y轴的交点均在y轴正半轴上,故不合题意;
B、C两选项中两直线从左往右均是上升的,则k与-2k全为正,也不合题意;
D选项中两直线满足题意;
故选:D
【点睛】
本题考查了一次函数的图象与性质,掌握一次函数的图象与性质,数形结合是关键本题的关键.
8、A
【解析】
【分析】
由知直线必过,据此求解可得.
【详解】
解:,
当时,,
则直线必过,
如图满足条件的大致图象是:
故选:A.
【点睛】
本题主要考查一次函数的图象,解题的关键是掌握一次函数的图象性质:①当,时,图象过一、二、三象限;②当,时,图象过一、三、四象限;③当,时,图象过一、二、四象限;④当,时,图象过二、三、四象限.
9、C
【解析】
【分析】
求出正比函数的解析式,k值的绝对值表示车的速度;横轴上两个时间点的差表示乙走完全程所用时间,求出一次函数的解析式,确定它与正比例函数的交点坐标,横坐标即为二车相遇时间.
【详解】
设甲的解析式为y=kx,
∴6k=300,
解得k=50,
∴=50x,
∴甲车的速度为,
∴①正确;
∵乙晚出发2小时,
∴乙车用了5-2=3(h)到达城,
∴②错误;
设,
∴,
∴,
∴,
∵,
∴,
即甲行驶4小时,乙追上甲,
∴③正确;
故选C.
【点睛】
本题考查了待定系数法确定函数的解析式,函数图像,交点坐标的确定,解二元一次方程组,熟练掌握待定系数法,准确求交点的坐标是解题的关键.
10、B
【解析】
【分析】
根据函数图象可知,小豪出发10分钟后,爸爸追上了小豪,根据此时爸爸的5分钟的行程等于小豪前5分钟的行程与后5分钟的行程和,得到出爸爸的速度与小豪骑自行车的速度的关系,设小豪的速度为x米/分,根据点(,0)列方程可得小豪与爸爸的速度,进而得出爸爸到达公司时,小豪距离书店路程.
【详解】
解:设小豪骑自行车的速度为xm/min,则爸爸的速度为:
(5x+5×x)÷5=x(m/min),
∵公司位于家正西方500米,
∴(−10−2)×x=500+(5+2.5)x,
解得x=200,
∴小豪骑自行车的速度为200m/min,爸爸的速度为:200×=300m/min,
爸爸到达公司时,丁丁距离商店路程为:
3500-(−12)×(300+200)=m.
综上,正确的选项为B.
故选:B.
【点睛】
本题考查了一次函数的应用,学会正确利用图象信息,把问题转化为方程解决是本题的关键,属于中考常考题型.
二、填空题
1、-2
【解析】
【分析】
由正比例函数的图象经过点的坐标,利用一次函数图象上点的坐标特征可得出-1=k+1,即可得出k值.
【详解】
解:∵正比例函数的图象经过点(1,-1),
∴-1=k+1,
∴k=-2.
故答案为:-2.
【点睛】
本题考查了正比例函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx是解题的关键.
2、10
【解析】
【分析】
把点代入解析式,即可求解.
【详解】
解:∵点是直线上一点,
∴ .
故答案为:10
【点睛】
本题主要考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.
3、2
【解析】
【分析】
由点P在一次函数图象上,利用一次函数图象上点的坐标特征可得出b=3a-1,再将其代入(3a-b+1)中即可求出结论.
【详解】
解:∵点P(a,b)在一次函数y=3x-1的图象上,
∴b=3a-1,
∴3a-b+1=3a-(3a-1)+1=2.
故答案为:2.
【点睛】
本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.
4、 x ≥-4
【解析】
【分析】
根据图像可知,函数和交于点P(-4,-2),即可得二元一次方程组的解;根据函数图像可知,当时,.
【详解】
解:根据图像可知,函数和交于点P(-4,-2),
则二元一次方程组的解是,
由图像可知,当时,,
故答案为:;.
【点睛】
本题考查了一次函数与二元一次方程组,解题的关键是掌握一次函数的性质.
5、
【解析】
【分析】
根据正比例函数的增减性进行判断即可直接得出.
【详解】
解:,
y随着x的增大而减小,
,
.
故答案为:.
【点睛】
题目主要考查正比例函数的增减性质,理解题意,熟练掌握运用函数的增减性是解题关键.
三、解答题
1、 (1)见解析
(2)
(3)6
【解析】
【分析】
(1)作出过点E的l的垂线即可解决;
(2)设直线l交x轴于点D,则由直线解析式可求得点D、点G的坐标,从而可得OD的长.由对称性及平行可得,设点P的坐标为(a,2a-2),则可得点E的坐标,由及勾股定理可求得点的坐标;
(3)分别过点A、B作y轴的平行线,与过点G的垂直于y轴的直线分别交于点C、M,则点E在线段CM上运动,根据对称性知,点运动路径的长度等于CM的长,故只要求得CM的长即可,由A、B两点的坐标即可求得CM的长.
(1)
所作出点E的对应点E′如下图所示:
(2)
设直线l交x轴于点D
在y=2x-2中,令y=0,得x=1;令x=0,得y=-2
则点D、点G的坐标分别为(1,0)、(0,-2)
∴OD=1,OG=2
由对称性的性质得:,
∵GE∥x轴
∴
∴
∴
∴
设点P的坐标为(a,2a-2),其中a>0,则可得点E的坐标为(a,-2)
∴EG=a
∴
∴
在Rt△中,由勾股定理得:
解得:
当时,
所以点P的坐标为
(3)
分别过点A、B作y轴的平行线,与过点G的垂直于y轴的直线分别交于点C、M,则点E在线段CM上运动,根据对称性知,点运动路径的长度等于CM的长
∵A,B两点的坐标分别为(-2,-6),(4,6)
∴CM=4-(-2)=6
则点运动路径的长为6
故答案为:6
【点睛】
本题主要考查了一次函数的图象与性质、折叠的性质、尺规作图等知识,一次函数的性质及折叠的性质的应用是本题的关键.
2、 (1)36千米
(2)y=90x-24 (0.8≤x≤2)
(3)1.2小时
【解析】
【分析】
(1)由OA段可求得此时小龚驾车的速度,从而可求得36分钟离家的距离;
(2)用待定系数法.AB段过点A与B,把这两点的坐标代入所设函数解析式中即可求得函数解析式;
(3)由题意可得小龚离家的距离,根据(2)中求得的函数解析式的函数值,解方程即可求得x的值,从而求得小龚行驶的时间.
(1)
在OA段,小龚行驶的速度为:48÷0.8=60(千米/时),36分钟=0.6小时,则小龚出发36分钟时,离家的距离为60×0.6=36(千米);
(2)
由图象知: ,
设AB段的函数解析式为:
把A、B两点的坐标分别代入上式得:
解得:
∴AB段的函数解析式为(0.8≤x≤2)
(3)
由图象知,当小龚离目的地还有72千米时,他已行驶了156−72=84(千米)
所以在中,当y=84时,即,得
即小龚离目的地还有72千米,小龚行驶了1.2小时.
【点睛】
本题考查了一次函数(正比例函数)的图象与性质,待定系数法求函数解析式,已知函数值求自变量的值等知识,数形结合是本题的关键.
3、 (1)钢笔的单价为元,笔记本的单价为元.
(2)①;②6支或10支
【解析】
【分析】
(1)设钢笔的单价为元,笔记本的单价为元,再根据买10支钢笔和2本笔记本,需230元;买8支钢笔和4本笔记本,需220元,列方程组,再解方程组即可;
(2)①当时,由总费用等于购买钢笔与笔记本的费用之和可列函数关系式,②分两种情况列方程,当或 再解方程可得答案.
(1)
解:设钢笔的单价为元,笔记本的单价为元,则
解得:
答:钢笔的单价为元,笔记本的单价为元.
(2)
解:①当时,w与a之间的函数关系式为:
所以w与a之间的函数关系式为
②当时,则
解得:
当时,
解得:
所以李老师购买纪念品一共花了210元钱,他可能购买了6支或支钢笔.
【点睛】
本题考查的是二元一次方程组的应用,一次函数的应用,掌握“确定相等关系列二元一次方程组与一次函数的关系式”是解本题的关键.
4、 (1)y=2x﹣4
(2)见解析
(3)x<3
【解析】
【分析】
(1)设y=k(x﹣2)(k为常数,k≠0),把x=1,y=﹣2代入得:﹣2=k(1﹣2),求出k=2即可;
(2)列表描点连线即可;
(3)先确定A点的坐标是(3,2),把A点的横坐标代入y=2x﹣4求出函数值=2,即点A也在函数y=2x﹣4的图象上,点A是函数y=ax+b和函数y=2x﹣4的交点,然后利用图像法求不等式的解集即可.
(1)
解:∵y与x﹣2成正比例,
∴设y=k(x﹣2)(k为常数,k≠0),
把x=1,y=﹣2代入得:﹣2=k(1﹣2),
解得:k=2,
即y=k(x﹣2)=2(x﹣2)=2x﹣4,
所以变量y与x的函数关系式是y=2x﹣4;
(2)
列表
x
0
2
y
-4
0
描点(0,-4),(2,0),
连线得y=2x﹣4的图象;
(3)
从图象可知:A点的坐标是(3,2),把A点的横坐标x=3代入y=2x﹣4时,y=2,
即点A也在函数y=2x﹣4的图象上,
即点A是函数y=ax+b和函数y=2x﹣4的交点,
∴关于x的不等式ax+b>2x﹣4反应在函数图像函数y=ax+b在函数y=2x﹣4图像上方,交点A的左侧,
所以关于x的不等式ax+b>2x﹣4的解集是x<3,
故答案为:x<3.
【点睛】
本题考查待定系数法求函数解析式,描点法画函数图像,用图像法求不等式的解集,掌握待定系数法求函数解析式,描点法画函数图像,用图像法求不等式的解集是解题关键.
5、 (1)y1=﹣x+3
(2)n=a+b
(3)当a>b时,x>1;当a<b时,x<1
【解析】
【分析】
(1)把(1,2)、(2,b-a-3)分别代入y1=ax+b得到a、b的方程组,然后解方程组得到y1的函数表达式;
(2)把A(m,n)分别代入y1=ax+b和y2=bx+a中得到am+b=nbm+a=n,先利用加减消元法求出m,然后得到n与a、b的关系式;
(3)先用a、b表示y3和y4,利用y3>y4得到(a-b)x+b-a>(b-a)x+a-b,然后解不等式即可.
(1)
解:把(1,2)、(2,b﹣a﹣3)分别代入y1=ax+b得
,
解得,
∴y1的函数表达式为y1=﹣x+3;
(2)
解:∵y1与y2的图象交于点A(m,n),
∴am+b=nbm+a=n,
∴m=1,n=a+b;
(3)
解:y3=y1﹣y2=ax+b﹣(bx+a)=(a﹣b)x+b﹣a,
y4=y2﹣y1=bx+a﹣(ax+b)=(b﹣a)x+a﹣b,
∵y3>y4,
∴(a﹣b)x+b﹣a>(b﹣a)x+a﹣b,
整理得(a﹣b)x>a﹣b,
当a>b时,x>1;
当a<b时,x<1.
【点睛】
本题考查了待定系数法求一次函数解析式:设一次函数解析式为y=kx+b(k≠0),再把两组对应量代入,然后解关于k,b的二元一次方程组.从而得到一次函数解析式.也考查了一次函数的性质.
相关试卷
这是一份初中数学第二十一章 一次函数综合与测试一课一练,共26页。试卷主要包含了如图所示,直线分别与轴,如图,一次函数y=kx+b等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试随堂练习题,共25页。试卷主要包含了如图,一次函数y=kx+b,直线不经过点等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试单元测试测试题,共23页。试卷主要包含了已知一次函数y=,一次函数的大致图象是等内容,欢迎下载使用。