【真题汇总卷】2022年山东省甄城县中考数学第三次模拟试题(含答案详解)
展开2022年山东省甄城县中考数学第三次模拟试题
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列关于x的方程中,一定是一元二次方程的是( )
A. B.
C. D.
2、已知二次函数,则关于该函数的下列说法正确的是( )
A.该函数图象与轴的交点坐标是
B.当时,的值随值的增大而减小
C.当取1和3时,所得到的的值相同
D.将的图象先向左平移两个单位,再向上平移5个单位得到该函数图象
3、根据以下程序,当输入时,输出结果为( )
A. B. C. D.
4、下列图形中,既是中心对称图形又是轴对称图形的是( )
A. B.
C. D.
5、若,则代数式的值为( )
A.6 B.8 C.12 D.16
6、和按如图所示的位置摆放,顶点B、C、D在同一直线上,,,.将沿着翻折,得到,将沿着翻折,得,点B、D的对应点、与点C恰好在同一直线上,若,,则的长度为( ).
A.7 B.6 C.5 D.4
7、如图,小玲将一个正方形纸片剪去一个宽为的长条后,再从剩下的长方形纸片上剪去一个宽为的长条,如果两次剪下的长条面积正好相等,那么原正方形的边长为( )cm.
A. B. C. D.
8、下列图形中,既是轴对称图形又是中心对称图形是( )
A. B. C. D.
9、若抛物线的顶点坐标为(1,-4),则抛物线与轴的交点个数为( )
A.0个 B.1个 C.2个 D.无法确定
10、下列计算错误的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知某函数的图象经过,两点,下面有四个推断:
①若此函数的图象为直线,则此函数的图象与直线平行;
②若此函数的图象为双曲线,则也在此函数的图象上;
③若此函数的图象为抛物线,且开口向下,则此函数图象一定与y轴的负半轴相交;
④若此函数的图象为抛物线,且开口向上,则此函数图象对称轴在直线左侧.
所有合理推断的序号是______.
2、如图,邮局在学校(______)偏(______)(______)°方向上,距离学校是(______)米.
3、如图所示,在平面直角坐标系中,.在y轴找一点P,使得的周长最小,则周长最小值为_______
4、不等式﹣5+x≤0非负整数解是____.
5、单项式的系数是______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,二次函数y=a(x﹣1)2﹣4a(a≠0)的图像与x轴交于A,B两点,与y轴交于点C(0,﹣).
(1)求二次函数的表达式;
(2)连接AC,BC,判定△ABC的形状,并说明理由.
2、计算:.
3、如图,在中,.
(1)用尺规完成以下基本图形:作边的垂直平分线,与边交于点D,与边交于点E;(保留作图痕迹,不写作法)
(2)在(1)所作的图形中,连接,若,,求的周长.
4、如图,点,,,在同一直线上.已知,,,请说明.
5、计算:.
-参考答案-
一、单选题
1、C
【分析】
根据一元二次方程的定义判断.
【详解】
A.含有,不是一元二次方程,不合题意;
B.整理得,-x+1=0,不是一元二次方程,不合题意;
C.x2=0是一元二次方程,故此选项符合题意;
D.当a=0时,ax2+bx+c=0,不是一元二次方程,不合题意.
故选C.
【点睛】
本题考查了一元二次方程的定义,解题时要注意两个方面:1、一元二次方程包括三点:①是整式方程,②只含有一个未知数,③所含未知数的项的最高次数是2;2、一元二次方程的一般形式是ax2+bx+c=0(a≠0).
2、C
【分析】
把,代入,即可判断A,由二次函数的图象开口向上,对称轴是直线,即可判断B,当取和,代入,即可判断C,根据函数图象的平移规律,即可判断D.
【详解】
∵二次函数的图象与轴的交点坐标是,
∴A选项错误;
∵二次函数的图象开口向上,对称轴是直线,
∴当时,的值随值的增大而增大,
∴B选项错误;
∵当取和时,所得到的的值都是11,
∴C选项正确;
∵将的图象先向左平移两个单位,再向上平移个单位得到的图象,
∴D选项错误.
故选:C.
【点睛】
本题主要考查二次函数的图象和性质,理解二次函数的性质是解题的关键.
3、C
【分析】
根据流程图所示顺序,逐框分析代入求值即可.
【详解】
解:当输入时,
代入
代入,则输出
故选C
【点睛】
本题考查了程序流程图与代数式求值,正确代入求值是解题的关键.
4、A
【详解】
解:.既是中心对称图形又是轴对称图形,故此选项符合题意;
.是轴对称图形,不是中心对称图形,故此选项不合题意;
.是轴对称图形,不是中心对称图形,故此选项不合题意;
.不是轴对称图形,是中心对称图形,故此选项不合题意.
故选:A.
【点睛】
本题考查的是中心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
5、D
【分析】
对已知条件变形为:,然后等式两边再同时平方即可求解.
【详解】
解:由已知条件可知:,
上述等式两边平方得到:,
整理得到:,
故选:D.
【点睛】
本题考查了等式恒等变形,完全平方公式的求值等,属于基础题,计算过程中细心即可.
6、A
【分析】
由折叠的性质得,,故,,推出,由,推出,根据AAS证明,即可得,,设,则,由勾股定理即可求出、,由计算即可得出答案.
【详解】
由折叠的性质得,,
∴,,
∴,
∵,
∴,
∴,
在与中,
,
∴,
∴,,
设,则,
∴,
解得:,
∴,,
∴.
故选:A.
【点睛】
本题考查折叠的性质以及全等三角形的判定与性质,掌握全等三角形的判定定理和性质是解题的关键.
7、B
【分析】
设正方形的边长为x cm,则第一个长条的长为x cm,宽为2cm,第二个长条的长为(x-2)cm,宽为3cm,根据两次剪下的长条面积正好相等列方程求解.
【详解】
解:设正方形的边长为x cm,则第一个长条的长为x cm,宽为2cm,第二个长条的长为(x-2)cm,宽为3cm,
依题意得:2x=3(x-2),
解得x=6
故选:B.
【点睛】
本题考查了由实际问题抽象出一元一次方程,找准等量关系,正值列出一元一次方程是解题的关键.
8、B
【分析】
根据轴对称图形和中心对称图形的定义求解即可.
【详解】
解:A、是轴对称图形,但不是中心对称图形,故选项错误,不符合题意;
B、既是轴对称图形又是中心对称图形,故选项正确,符合题意;
C、不是轴对称图形,是中心对称图形,故选项错误,不符合题意;
D、是轴对称图形,但不是中心对称图形,故选项错误,不符合题意.
故选:B.
【点睛】
此题考查了轴对称图形和中心对称图形的定义,解题的关键是熟练掌握轴对称图形的定义.轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.
9、C
【分析】
根据顶点坐标求出b=-2a,把b=-2a,(1,-4)代入得,再计算出即可得到结论
【详解】
解:∵抛物线的顶点坐标为(1,-4),
∴
∴
∴
把(1,-4)代入,得,
∴
∴
∴
∴抛物线与轴有两个交点
故选:C
【点睛】
本题主要考查了抛物线与x轴交点个数的确定,抛物线与x轴交点个数是由判别式确定:时,抛物线与x轴有2个交点;时,抛物线与x轴有1个交点;时,抛物线与x轴没有交点
10、B
【分析】
根据整式的乘除运算法则逐个判断即可.
【详解】
解:选项A:,故选项A正确,不符合题意;
选项B:,故选项B不正确,符合题意;
选项C:,故选项C正确,不符合题意;
选项D:,故选项D正确,不符合题意;
故选:B.
【点睛】
本题考查了同底数幂的乘、除运算;幂的乘方、积的乘方等运算,熟练掌握运算法则是解决本类题的关键.
二、填空题
1、①②④
【分析】
分别根据过A、B两点的函数是一次函数、二次函数时,相应的函数的性质进行判断即可.
【详解】
解:①过,两点的直线的关系式为y=kx+b,则
,
解得,
所以直线的关系式为y=x-1,
直线y=x-1与直线y=x平行,
因此①正确;
②过,两点的双曲线的关系式为,则,
所以双曲线的关系式为
当时,
∴也在此函数的图象上,
故②正确;
③若过,两点的抛物线的关系式为y=ax2+bx+c,
当它经过原点时,则有
解得,
对称轴x=-,
∴当对称轴0<x=-<时,抛物线与y轴的交点在正半轴,
当->时,抛物线与y轴的交点在负半轴,
因此③说法不正确;
④当抛物线开口向上时,有a>0,而a+b=1,即b=-a+1,
所以对称轴x=-=-=-,
因此函数图象对称轴在直线x=左侧,
故④正确,
综上所述,正确的有①②④,
故答案为:①②④.
【点睛】
本题考查一次函数、二次函数的图象和性质,待定系数法求函数的关系式,理解各种函数的图象和性质是正确判断的前提.
2、北
东 45 1000
【分析】
图上距离1厘米表示实际距离200米,于是即可求出它们之间的实际距离,再根据它们之间的方向关系,即可进行解答.
【详解】
解:邮局在学校北偏东45°的方向上,距离学校 1000米.
故答案为:北,东,45,1000.
【点睛】
此题主要考查了方位角,以及线段比例尺的意义的理解和灵活应用.
3、
【分析】
作点B关于y轴的对称点C,连接AC,与y轴的交点即为满足条件的点P,由勾股定理求出AC、AB的长,即可求得周长最小值.
【详解】
作点B关于y轴的对称点C,则点C的坐标为,连接AC,与y轴的交点即为满足条件的点P,如图所示
由对称的性质得:PB=PC
∴AB+PA+PB=AB+PA+PC≥AB+AC
即当点P在AC上时,周长最小,且最小值为AB+AC
由勾股定理得:,
∴周长最小值为
故答案为:
【点睛】
本题考查了点与坐标,两点间距离最短,对称的性质,勾股定理等知识,作点关于x轴的对称点是关键.
4、0,1,2,3,4,5
【分析】
先根据不等式的基本性质求出x的取值范围,再根据x的取值范围求出符合条件的x的非负整数解即可.
【详解】
解:移项得:x≤5,
故原不等式的非负整数解为:0,1,2,3,4,5.
故答案为:0,1,2,3,4,5.
【点睛】
本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.
5、##
【分析】
单项式中的数字因数是单项式的系数,根据概念直接作答即可.
【详解】
解:单项式的系数是,
故答案为:
【点睛】
本题考查的是单项式的系数的概念,掌握“单项式的系数的概念求解单项式的系数”是解本题的关键.
三、解答题
1、
(1);
(2)直角三角形,理由见解析.
【分析】
(1)将点C的坐标代入函数解析式,即可求出a的值,即得出二次函数表达式;
(2)令,求出x的值,即得出A、B两点的坐标.再根据勾股定理,求出三边长.最后根据勾股定理逆定理即可判断的形状.
(1)
解:将点C代入函数解析式得:,
解得:,
故该二次函数表达式为:.
(2)
解:令,得:,
解得:,.
∴A点坐标为(-1,0),B点坐标为(3,0).
∴OA=1,OC=,,
∴,
.
∵,即,
∴的形状为直角三角形.
【点睛】
本题考查利用待定系数法求函数解析式,二次函数图象与坐标轴的交点坐标,勾股定理逆定理.根据点C的坐标求出函数解析式是解答本题的关键.
2、
【分析】
去括号合并同类项即可.
【详解】
解:原式
.
【点睛】
本题考查了整式的加减,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.
3、
(1)见解析
(2)26
【分析】
(1)分别以点A、点B为圆心,以大于AB为半径画弧得两个交点,过两个交点画直线即可;
(2)由垂直平分线的性质可得,然后根据周长公式求解即可.
(1)
解:如图,直线即为所求的垂直平分线;
(2)
解:∵直线为边的垂直平分线,
∴.
∴.
∵,
∴的周长.
【点睛】
本题考查了尺规作图-作线段的垂直平分线,以及线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两个端点的距离相等是解答本题的关键.
4、见详解.
【分析】
用AAS证明△ABF≌△DCE即可.
【详解】
解:∵
又∵∠A=∠D,∠B=∠C,
∴△ABF≌△DCE(AAS).
【点睛】
本题考查了全等三角形的判定,证明BF=CE是解决本题的关键.
5、
【详解】
解:原式
.
【点睛】
本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算.如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行.
【历年真题】2022年山东省甄城县中考数学真题汇总 卷(Ⅱ)(含答案及详解): 这是一份【历年真题】2022年山东省甄城县中考数学真题汇总 卷(Ⅱ)(含答案及详解),共26页。
2022年山东省甄城县中考数学三年高频真题汇总 卷(Ⅰ)(含详解): 这是一份2022年山东省甄城县中考数学三年高频真题汇总 卷(Ⅰ)(含详解),共24页。试卷主要包含了下列计算错误的是,在下列运算中,正确的是等内容,欢迎下载使用。
【真题汇总卷】2022年山东省甄城县中考数学模拟考试 A卷(含答案详解): 这是一份【真题汇总卷】2022年山东省甄城县中考数学模拟考试 A卷(含答案详解),共26页。试卷主要包含了下列方程中,解为的方程是,下列式子运算结果为2a的是.等内容,欢迎下载使用。