2022年山东省甄城县中考数学三年高频真题汇总 卷(Ⅰ)(含详解)
展开2022年山东省甄城县中考数学三年高频真题汇总 卷(Ⅰ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在中,.分别以点A,B为圆心,大于的长为半径画弧.两弧相交于点M和点N,作直线MN分别交BC、AB于点D和点E,若,则的度数是( )
A.22° B.24° C.26° D.28°
2、数学活动课上,同学们想测出一个残损轮子的半径,小宇的解决方案如下:如图,在轮子圆弧上任取两点A,B,连接,再作出的垂直平分线,交于点C,交于点D,测出的长度,即可计算得出轮子的半径.现测出,则轮子的半径为( )
A. B. C. D.
3、下列运算中,正确的是( )
A.=﹣6 B.﹣=5 C.=4 D.=±8
4、下列计算错误的是( )
A. B.
C. D.
5、如图,在△ABC和△DEF中,AC∥DF,AC=DF,点A、D、B、E在一条直线上,下列条件不能判定△ABC≌△DEF的是( ).
A. B.
C. D.
6、在下列运算中,正确的是( )
A.a3•a2=a6 B.(ab2)3=a6b6
C.(a3)4=a7 D.a4÷a3=a
7、若反比例函数的图象经过点,则该函数图象不经过的点是( )
A.(1,4) B.(2,-2) C.(4,-1) D.(1,-4)
8、如图,有一条直的宽纸带,按图折叠,则∠α的度数等于( )
A.50° B.65° C.75° D.80°
9、已知二次函数,则关于该函数的下列说法正确的是( )
A.该函数图象与轴的交点坐标是
B.当时,的值随值的增大而减小
C.当取1和3时,所得到的的值相同
D.将的图象先向左平移两个单位,再向上平移5个单位得到该函数图象
10、有理数、、、在数轴上对应的点的位置如图所示,则下列结论错误的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若a<<a+1,则整数a=___.
2、如图,一次函数的图像与轴交于点,与正比例函数的图像交于点,点的横坐标为1.5,则满足的的范围是______.
3、如图,P是反比例函数图象上第二象限内的一点,且矩形PEOF的面积为4,则反比例函数的解析式是______.
4、已知圆弧所在圆的半径为36cm.所对的圆心角为60°,则该弧的长度为______cm.
5、抛物线与x轴的两个交点之间的距离为4,则t的值是______.
三、解答题(5小题,每小题10分,共计50分)
1、已知:二次函数y=x2﹣1.
(1)写出此函数图象的开口方向、对称轴、顶点坐标;
(2)画出它的图象.
2、小明根据学习函数的经验,对函数y=﹣|x|+3的图象与性质进行了探究.下面是小明的探究过程,请你解决相关问题.
(1)如表y与x的几组对应值:
x | … | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | -1 | 0 | 1 | 2 | 3 | 2 | 1 | a | -1 | … |
①a= ;
②若A(b,﹣7)为该函数图象上的点,则b= ;
(2)如图,在平面直角坐标系中,描出以上表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象:
①该函数有 (填“最大值”或“最小值”),并写出这个值为 ;
②求出函数图象与坐标轴在第二象限内所围成的图形的面积.
3、综合与探究
如图,直线与轴,轴分别交于,两点,抛物线经过,两点,与轴的另一个交点为(点在点的左侧),抛物线的顶点为点.抛物线的对称轴与轴交于点.
(1)求抛物线的表达式及顶点的坐标;
(2)点M是线段上一动点,连接并延长交轴交于点,当时,求点的坐标;
(3)点是该抛物线上的一动点,设点的横坐标为,试判断是否存在这样的点,使,若存在,请直接写出的值;若不存在,请说明理由.
4、如图,在内部作射线和的平分线.
(1)请补全图形;
(2)若,,求的度数;
(3)若是的角平分线,,求的度数.
5、已知a+b=5,ab=﹣2.求下列代数式的值:
(1)a2+b2;
(2)2a2﹣3ab+2b2.
-参考答案-
一、单选题
1、B
【分析】
由尺规作图痕迹可知MN垂直平分AB,得到DA=DB,进而得到∠DAB=∠B=50°,再利用等腰三角形的性质和三角形内角和计算出∠BAC,然后计算∠BAC-∠DAB即可.
【详解】
解:∵,
∴∠B=∠C=52°,∠BAC=180°-∠B-∠C=180°-52°-52°=76°,
由尺规作图痕迹可知:MN垂直平分AB,
∴DA=DB,
∴∠DAB=∠B=52°,
∴∠CAD=∠BAC-∠DAB=76°-52°=24°.
故选:B.
【点睛】
本题考查了线段垂直平分线的尺规作图及等腰三角形的性质等,熟练掌握线段垂直平分线的性质及等腰三角形的性质是解决本类题的关键.
2、C
【分析】
由垂径定理,可得出BC的长;连接OB,在Rt△OBC中,可用半径OB表示出OC的长,进而可根据勾股定理求出得出轮子的半径即可.
【详解】
解:设圆心为O,连接OB.
Rt△OBC中,BC=AB=20cm,
根据勾股定理得:
OC2+BC2=OB2,即:
(OB-10)2+202=OB2,
解得:OB=25;
故轮子的半径为25cm.
故选:C.
【点睛】
本题考查垂径定理,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
3、C
【分析】
根据算术平方根的意义逐项化简即可.
【详解】
解:A.无意义,故不正确;
B.﹣=-5,故不正确;
C.=4,正确;
D.=8,故不正确;
故选C.
【点睛】
本题考查了算术平方根,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根.
4、B
【分析】
根据整式的乘除运算法则逐个判断即可.
【详解】
解:选项A:,故选项A正确,不符合题意;
选项B:,故选项B不正确,符合题意;
选项C:,故选项C正确,不符合题意;
选项D:,故选项D正确,不符合题意;
故选:B.
【点睛】
本题考查了同底数幂的乘、除运算;幂的乘方、积的乘方等运算,熟练掌握运算法则是解决本类题的关键.
5、D
【分析】
根据各个选项中的条件和全等三角形的判定可以解答本题.
【详解】
解:∵AC∥DF,
∴∠A=∠EDF,
∵AC=DF,∠A=∠EDF,添加∠C=∠F,根据ASA可以证明△ABC≌△DEF,故选项A不符合题意;
∵AC=DF,∠A=∠EDF,添加∠ABC=∠DEF,根据AAS可以证明△ABC≌△DEF,故选项B不符合题意;
∵AC=DF,∠A=∠EDF,添加AB=DE,根据SAS可以证明△ABC≌△DEF,故选项C不符合题意;
∵AC=DF,∠A=∠EDF,添加BC=EF,不可以证明△ABC≌△DEF,故选项D符合题意;
故选:D.
【点睛】
本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.
6、D
【分析】
由;;,判断各选项的正误即可.
【详解】
解:A中,错误,故本选项不合题意;
B中,错误,故本选项不合题意;
C中,错误,故本选项不合题意;
D中,正确,故本选项符合题意.
故选:D.
【点睛】
本题考查了同底数幂的乘除,积的乘方,幂的乘方等知识.解题的关键在于正确求解.
7、A
【分析】
由题意可求反比例函数解析式,将点的坐标一一打入求出xy的值,即可求函数的图象不经过的点.
【详解】
解:因为反比例函数的图象经过点,
所以,
选项A,该函数图象不经过的点(1,4),故选项A符合题意;
选项B,该函数图象经过的点(2,-2),故选项B不符合题意;
选项C,该函数图象经过的点(4,-1),故选项C不符合题意;
选项B,该函数图象经过的点(1,-4),故选项D不符合题意;
故选A.
【点睛】
考查了反比例函数图象上点的坐标特征,熟练运用反比例函数图象上点的坐标满足其解析式是本题的关键.
8、B
【分析】
根据题意得:BG∥AF,可得∠FAE=∠BED=50°,再根据折叠的性质,即可求解.
【详解】
解:如图,
根据题意得:BG∥AF,
∴∠FAE=∠BED=50°,
∵AG为折痕,
∴ .
故选:B
【点睛】
本题主要考查了图形的折叠,平行线的性质,熟练掌握两直线平行,同位角相等;图形折叠前后对应角相等是解题的关键.
9、C
【分析】
把,代入,即可判断A,由二次函数的图象开口向上,对称轴是直线,即可判断B,当取和,代入,即可判断C,根据函数图象的平移规律,即可判断D.
【详解】
∵二次函数的图象与轴的交点坐标是,
∴A选项错误;
∵二次函数的图象开口向上,对称轴是直线,
∴当时,的值随值的增大而增大,
∴B选项错误;
∵当取和时,所得到的的值都是11,
∴C选项正确;
∵将的图象先向左平移两个单位,再向上平移个单位得到的图象,
∴D选项错误.
故选:C.
【点睛】
本题主要考查二次函数的图象和性质,理解二次函数的性质是解题的关键.
10、C
【分析】
根据有理数a,b,c,d在数轴上对应的点的位置,逐个进行判断即可.
【详解】
解:由有理数a,b,c,d在数轴上对应的点的位置可得,
-4<d<-3<-1<c<0<1<b<2<3<a<4,
∴,,,
,
故选:C.
【点睛】
本题考查数轴表示数的意义,根据点在数轴上的位置,确定该数的符号和绝对值是正确判断的前提.
二、填空题
1、3
【分析】
估算出的取值范围即可求出a的值.
【详解】
解:∵,
∴3<<4,
∵a<<a+1,
∴a=3,
故答案为:3.
【点睛】
此题主要考查了估算无理数的大小,在确定形如(a≥0)的无理数的整数部分时,常用的方法是“夹逼法”,其依据是平方和开平方互为逆运算.
2、x>-3
【分析】
根据图象得出P点横坐标为1.5,联立y=kx-3和y=mx得m=k-2,再联立y=kx+6和y=(k-2)x解得x=-3,画草图观察函数图象得解集为.
【详解】
∵P是y=mx和y=kx-3的交点,点P的横坐标为1.5,
∴
解得m=k-2
联立y=mx和y=kx+6得
解得x=-3
即函数y=mx和y=kx+6交点P’的横坐标为-3,
观察函数图像得,
满足kx−3<mx<kx+6的x的范围为:
故答案为:
【点睛】
本题主要考查对一次函数与一元一次不等式的理解和掌握,解题的关键在于将不等式kx−3<mx<kx+6解集转化为直线y=mx与直线y=kx-3,直线y=kx+6相交的横坐标x的范围.
3、##
【分析】
因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|,再根据反比例函数的图象所在的象限确定k的值,即可求出反比例函数的解析式.
【详解】
解:由图象上的点所构成的矩形PEOF的面积为4可知,
S=|k|=4,k=±4.
又由于反比例函数的图象在第二、四象限,k<0,
则k=-4,所以反比例函数的解析式为 .
故答案为: .
【点睛】
本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.
4、
【分析】
根据弧长公式直接计算即可.
【详解】
∵圆的半径为36cm.所对的圆心角为60°,
∴弧的长度为:=12π,
故答案为:12π.
【点睛】
本题考查了弧长的计算,熟练掌握弧长公式及其使用条件是解题的关键.
5、
【分析】
设抛物线与x轴的两个交点的横坐标为 则是的两根,且 再利用两个交点之间的距离为4列方程,再解方程可得答案.
【详解】
解:设抛物线与x轴的两个交点的横坐标为
是的两根,且
两个交点之间的距离为4,
解得: 经检验:是原方程的根且符合题意,
故答案为:
【点睛】
本题考查的是二次函数与轴的交点坐标,两个交点之间的距离,掌握“求解二次函数与轴的交点坐标”是解本题的关键.
三、解答题
1、
(1)抛物线的开口方向向上,对称轴为y轴,顶点坐标为(0,﹣1).
(2)图像见解析.
【分析】
(1)根据二次函数y=a(x-h)2+k,当a>0时开口向上;顶点式可直接求得其顶点坐标为(h,k)及对称轴x=h;
(2)可分别求得抛物线顶点坐标以及抛物线与x轴、y轴的交点坐标,利用描点法可画出函数图象.
(1)
解:(1)∵二次函数y=x2﹣1,
∴抛物线的开口方向向上,顶点坐标为(0,﹣1),对称轴为y轴;
(2)
解:在y=x2﹣1中,令y=0可得x2﹣1=0.
解得x=﹣1或1,所以抛物线与x轴的交点坐标为(-1,0)和(1,0);
令x=0可得y=﹣1,所以抛物线与y轴的交点坐标为(0,-1);
又∵顶点坐标为(0,﹣1),对称轴为y轴,
再求出关于对称轴对称的两个点,
将上述点列表如下:
x | -2 | -1 | 0 | 1 | 2 |
y=x2﹣1 | 3 | 0 | -1 | 0 | 3 |
描点可画出其图象如图所示:
【点睛】
本题考察了二次函数的开口方向、对称轴以及顶点坐标.以及二次函数抛物线的画法.解题的关键是把二次函数的一般式化为顶点式.描点画图的时候找到关键的几个点,如:与x轴的交点与y轴的交点以及顶点的坐标.
2、
(1)①0;②±10;
(2)见解析;①最大值,3;②
【分析】
(1)①根据表中对应值和对称性即可求解;②将点A坐标代入函数解析式中求解即可;
(2)根据表中对应值,利用描点法画出函数图象即可.①根据图象即解答即可;②根据图象在第二象限的部分,利用三角形的面积公式求解即可.
(1)
解:①由表可知,该函数图象关于y轴对称,
∵当x=-3时,y=0,
∴当x=3时,a=0,
故答案为:0;
②将A(b,-7)代入y=﹣|x|+3中,得:-7 =﹣|b|+3,即|b|=10,
解得:b=±10,
故答案为:±10;
(2)
解:函数y=﹣|x|+3的图象如图所示:
①由图象可知,该函数有最大值,最大值是3,
故答案为:最大值,3;
②由图象知,函数图象与坐标轴在第二象限内所围成的图形的面积为.
【点睛】
本题考查求自变量或函数值、画函数图象、从图象中获取信息、解绝对值方程、三角形的面积公式,理解题意,准确从表中和图象中获取有效信息是解答的关键.
3、(1),;(2);(3)存在,的值为4或
【分析】
(1)分别求出两点坐标代入抛物线即可求得a、c的值,将抛物线化为顶点式,即可得顶点的坐标;
(2)作轴于点,可证∽,从而可得,代入,,可求得,代入可得,从而可得点的坐标;
(3)由,可得,由两点坐标可得,所以,过点P作PQ⊥AB,分点P在x轴上方和下方两种情况即可求解.
【详解】
(1)当时,得,
∴点的坐标为(0,4),
当时,得,解得:,
∴点的坐标为(6,0),
将两点坐标代入,得
解,得
∴抛物线线的表达式为
∵
∴顶点坐标为.
(2)作轴于点,
∵,,
∴∽.
∴.
∴.
∴
当时,
∴.
∴点的坐标为.
(3)∵,,
∴,
∵点的坐标为(6,0),点的坐标为(0,4),
∴,
∴,
过点P作PQ⊥AB,
当点P在x轴上方时,
解得m=4符合题意,
当点P在x轴下方时,
解得m=8符合题意,
∴存在,的值为4或.
【点睛】
本题考查了抛物线解析式的求法,抛物线的性质,三角形相似的判定及性质,三角函数的应用,解题的关键是准确作出辅助线,利用数形结合的思想列出相应关系式.
4、
(1)图见解析
(2)
(3)
【分析】
(1)先根据射线的画法作射线,再利用量角器画的平分线即可得;
(2)先根据角的和差可得,再根据角平分线的定义即可得;
(3)先根据角平分线的定义可得,,再根据可得的度数,由此即可得.
(1)
解:补全图形如下:
(2)
解:,,
,
是的平分线,
;
(3)
解:是的角平分线,
,
是的平分线,
,
,
,
解得,
.
【点睛】
本题考查了画射线和角平分线、与角平分线有关的计算,熟练掌握角平分线的运算是解题关键.
5、
(1)29;
(2)64
【分析】
(1)利用已知得出(a+b)2=25,进而化简求出即可;
(2)利用(1)中所求,进而求出即可.
(1)
解:(1)∵a+b=5,ab=﹣2,∴(a+b)2=25,
则a2+b2+2×(﹣2)=25,
故a2+b2=29;
(2)
(2)2a2﹣3ab+2b2
=2(a2+b2)﹣3ab
=2×29﹣3×(﹣2)
=64.
【点睛】
本题考查了完全平方公式的应用,解题的关键是正确利用完全平方公式求出.
【历年真题】2022年山东省甄城县中考数学真题汇总 卷(Ⅱ)(含答案及详解): 这是一份【历年真题】2022年山东省甄城县中考数学真题汇总 卷(Ⅱ)(含答案及详解),共26页。
【真题汇总卷】2022年山东省甄城县中考数学模拟考试 A卷(含答案详解): 这是一份【真题汇总卷】2022年山东省甄城县中考数学模拟考试 A卷(含答案详解),共26页。试卷主要包含了下列方程中,解为的方程是,下列式子运算结果为2a的是.等内容,欢迎下载使用。
【真题汇总卷】2022年山东省甄城县中考数学第三次模拟试题(含答案详解): 这是一份【真题汇总卷】2022年山东省甄城县中考数学第三次模拟试题(含答案详解),共20页。试卷主要包含了若,则代数式的值为,和按如图所示的位置摆放,顶点B,若抛物线的顶点坐标为等内容,欢迎下载使用。