高中数学人教版新课标A必修12.1.2指数函数及其性质导学案
展开
2.1.2 指数函数的图像与性质
【教学目标】
(1)使学生了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系;
(2)理解指数函数的的概念和意义,能画出具体指数函数的图象,探索并理解指数函数的单调性和特殊点;
(3)在学习的过程中体会研究具体函数及其性质的过程和方法,如具体到一般的过程、数形结合的方法等.
【教学重难点】
教学重点:指数函数的的概念和性质.
教学难点:用数形结合的方法从具体到一般地探索、概括指数函数的性质.
【教学过程】
㈠情景导入、展示目标
1. (合作讨论)人口问题是全球性问题,由于全球人口迅猛增加,已引起全世界关注.世界人口2000年大约是60亿,而且以每年1.3%的增长率增长,按照这种增长速度,到2050年世界人口将达到100多亿,大有“人口爆炸”的趋势.为此,全球范围内敲起了人口警钟,并把每年的7月11日定为“世界人口日”,呼吁各国要控制人口增长.为了控制人口过快增长,许多国家都实行了计划生育.
我国人口问题更为突出,在耕地面积只占世界7%的国土上,却养育着22%的世界人口.因此,中国的人口问题是公认的社会问题.2000年第五次人口普查,中国人口已达到13亿,年增长率约为1%.为了有效地控制人口过快增长,实行计划生育成为我国一项基本国策.
按照上述材料中的1%的增长率,从2000年起,x年后我国的人口将达到2000年的多少倍?
到2050年我国的人口将达到多少?
你认为人口的过快增长会给社会的发展带来什么样的影响?
2. 上一节中GDP问题中时间x与GDP值y的对应关系y=1.073x(x∈N*,x≤20)能否构成函数?
3. 一种放射性物质不断变化成其他物质,每经过一年的残留量是原来的84%,那么以时间x年为自变量,残留量y的函数关系式是什么?
上面的几个函数有什么共同特征?
㈡检查预习、交流展示
1.根据预习说以下你是怎么理解指数函数的定义?
2.指数函数的性质有哪些?
㈢合作探究、精讲精练
探究点一:指数函数的概念
一般地,函数叫做指数函数(exponential function),其中x是自变量,函数的定义域为R.
注意: 指数函数的定义是一个形式定义,要引导学生辨析;
注意指数函数的底数的取值范围,引导学生分析底数为什么不能是负数、零和1.
例1:指出下列函数那些是指数函数:
(1)(2)(3) (4)(5)(6)(7)(8)
解析:利用指数函数的定义解决这类问题。
解:(1),(5),(8)为指数函数
(2)是幂函数(3)是-1与指数函数的乘积(4)中底数-4<0,不是指数函数(6)中指数不是自变量x,而是的函数(7)中底数不是常数
点评:准确理解指数函数的定义是解好本题的关键.
变式训练一:1.函数是指数函数,则有( )
A.a=1或a=2 B.a=1 C.a=2 D.a>0且
答案:C
探究点二:指数函数的图象和性质
问题:你能类比前面讨论函数性质时的思路,提出研究指数函数性质的内容和方法吗?
研究方法:画出函数的图象,结合图象研究函数的性质.
研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.
探索研究:
1.在同一坐标系中画出下列函数的图象:
(1)
(2)
(3)
(4)
(5)
2.从画出的图象中你能发现函数的图象和函数的图象有什么关系?可否利用的图象画出的图象?
3.从画出的图象(、和)中,你能发现函数的图象与其底数之间有什么样的规律?
4.你能根据指数函数的图象的特征归纳出指数函数的性质吗?
图象特征 | 函数性质 | ||
向x、y轴正负方向无限延伸 | 函数的定义域为R | ||
图象关于原点和y轴不对称 | 非奇非偶函数 | ||
函数图象都在x轴上方 | 函数的值域为R+ | ||
函数图象都过定点(0,1) | |||
自左向右看, 图象逐渐上升 | 自左向右看, 图象逐渐下降 | 增函数 | 减函数 |
在第一象限内的图象纵坐标都大于1 | 在第一象限内的图象纵坐标都小于1 | ||
在第二象限内的图象纵坐标都小于1 | 在第二象限内的图象纵坐标都大于1 | ||
图象上升趋势是越来越陡 | 图象上升趋势是越来越缓 | 函数值开始增长较慢,到了某一值后增长速度极快; | 函数值开始减小极快,到了某一值后减小速度较慢; |
5.利用函数的单调性,结合图象还可以看出:
(1)在[a,b]上,值域是或;
(2)若,则;取遍所有正数当且仅当;
(3)对于指数函数,总有;
(4)当时,若,则;
例2:求下列函数的定义域
(1) (2)
解析:求定义域注意分母不为零,偶次根式里面为非负数。
解(1):令x-40,得x4,
故定义域为(-,4)(4,+)
(2):
所以的定义域为
点评:求函数的定义域是解决函数问题的基础。
变式训练二:的定义域
答案:[-1,+]
㈣反馈测试
导学案当堂检测
㈤总结反思、共同提高
【板书设计】
一、指数函数
1.定义
2. 图像
3. 性质
二、例题
例1
变式1
例2
变式2
【作业布置】
导学案课后练习与提高
2.1.2 指数函数的图像与性质
课前预习学案
一.预习目标
了解指数函数的定义及其性质.
二.预习内容
1.一般地,函数 叫做指数函数.
2.指数函数的定义域是 ,值域 .
3.指数函数的图像必过特殊点 .
4.指数函数,当 时,在上是增函数;当 时, 在上是减函数.
三.提出疑惑
同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中
疑惑点 | 疑惑内容 |
|
|
|
|
|
|
课内探究学案
一.学习目标
(1)使学生了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系;
(2)理解指数函数的的概念和意义,能画出具体指数函数的图象,探索并理解指数函数的单调性和特殊点;
(3)在学习的过程中体会研究具体函数及其性质的过程和方法,如具体到一般的过程、数形结合的方法等.
教学重点:指数函数的的概念和性质.
教学难点:用数形结合的方法从具体到一般地探索、概括指数函数的性质.
二、学习过程
1.(合作讨论)人口问题是全球性问题,由于全球人口迅猛增加,已引起全世界关注.世界人口2000年大约是60亿,而且以每年1.3%的增长率增长,按照这种增长速度,到2050年世界人口将达到100多亿,大有“人口爆炸”的趋势.为此,全球范围内敲起了人口警钟,并把每年的7月11日定为“世界人口日”,呼吁各国要控制人口增长.为了控制人口过快增长,许多国家都实行了计划生育.
我国人口问题更为突出,在耕地面积只占世界7%的国土上,却养育着22%的世界人口.因此,中国的人口问题是公认的社会问题.2000年第五次人口普查,中国人口已达到13亿,年增长率约为1%.为了有效地控制人口过快增长,实行计划生育成为我国一项基本国策.
按照上述材料中的1%的增长率,从2000年起,x年后我国的人口将达到2000年的多少倍?
到2050年我国的人口将达到多少?
你认为人口的过快增长会给社会的发展带来什么样的影响?
2.上一节中GDP问题中时间x与GDP值y的对应关系y=1.073x(x∈N*,x≤20)能否构成函数?
3.一种放射性物质不断变化成其他物质,每经过一年的残留量是原来的84%,那么以时间x年为自变量,残留量y的函数关系式是什么?
上面的几个函数有什么共同特征?
探究一:指数函数的定义及特点:
例1:指出下列函数那些是指数函数:
(1)(2)(3) (4)(5)(6)(7)(8)
变式训练一:1.函数是指数函数,则有( )
A.a=1或a=2 B.a=1 C.a=2 D.a>0且
探究二:指数函数的图像与性质
在同一坐标系中画出下列函数的图象:
(1)
(2)
(3)
(4)
例2:求下列函数的定义域
(1) (2)
变式训练二:的定义域
三.反思总结
四.当堂检测
1.关于指数函数和的图像,下列说法不正确的是( )
A.它们的图像都过(0,1)点,并且都在x轴的上方.
B.它们的图像关于y轴对称,因此它们是偶函数.
C.它们的定义域都是R,值域都是(0,+).
D.自左向右看的图像是上升的,的图像是下降的.
2.函数在R上是减函数,则的取值范围是( )
A、 B、 C、 D、
3.指数函数f(x)的图像恒过点(-3,),则f(2)= .
参考答案:1.B 2.D 3.4
课后练习与提高
1.下列关系式中正确的是( )
A.<< B.<<
C.<< D.<<
2.下列函数中值域是(0,+)的函数是( )
A. B. C. D.
3.函数在[0,1]上的最大值与最小值之和为3,则a等于( )
A.0.5 B.2 C.4 D.0.25
4.函数的定义域是
5.已知f(x)=,则f[f(-1)]= .
6.设,解关于的不等式。
参考答案:1.C 2.D 3.B 4 .X 5.
6.解:因为,所以 在上为减函数,因为 , 所以
高中数学人教版新课标A必修12.1.2指数函数及其性质导学案: 这是一份高中数学人教版新课标A必修12.1.2指数函数及其性质导学案,共2页。学案主要包含了教学目标,重难点,课时学法指导,预习案,探究案,训练案,反思与小结等内容,欢迎下载使用。
高中数学人教版新课标A必修12.1.2指数函数及其性质学案及答案: 这是一份高中数学人教版新课标A必修12.1.2指数函数及其性质学案及答案,共4页。学案主要包含了课前准备,新课导学,总结提升等内容,欢迎下载使用。
数学必修12.1.2指数函数及其性质导学案: 这是一份数学必修12.1.2指数函数及其性质导学案,共4页。学案主要包含了课前准备,新课导学,总结提升等内容,欢迎下载使用。