终身会员
搜索
    上传资料 赚现金

    数学:2.1《指数与指数函数》课件(湘教版必修1)

    立即下载
    加入资料篮
    数学:2.1《指数与指数函数》课件(湘教版必修1)第1页
    数学:2.1《指数与指数函数》课件(湘教版必修1)第2页
    数学:2.1《指数与指数函数》课件(湘教版必修1)第3页
    数学:2.1《指数与指数函数》课件(湘教版必修1)第4页
    数学:2.1《指数与指数函数》课件(湘教版必修1)第5页
    数学:2.1《指数与指数函数》课件(湘教版必修1)第6页
    还剩6页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年3.1.2指数函数教学ppt课件

    展开

    这是一份2020-2021学年3.1.2指数函数教学ppt课件,共12页。PPT课件主要包含了根式的概念,根式的性质,分数指数幂的意义,指数函数,课堂练习,典型例题,化简下列各式,∴a-10,以下同上,∴3a2等内容,欢迎下载使用。


    一、整数指数幂的运算性质
    如果一个数的 n 次方等于 a(n>1 且 n∈N*), 那么这个数叫做 a 的 n 次方根. 即: 若 xn=a, 则 x 叫做 a 的 n 次方根, 其中 n>1且 n∈N*.
    (1)am·an=am+n (m, n∈Z);
    (2)am÷an=am-n (a0, m, n∈Z);
    (3)(am)n=amn (m, n∈Z);
    (4)(ab)n=anbn (n∈Z).
    5.负数没有偶次方根.
    6.零的任何次方根都是零.
    五、有理数指数幂的运算性质
    注: 0 的正分数指数幂等于 0, 0 的负分数指数幂没有意义.
    函数 y=ax(a>0, 且a1)叫做指数函数, 其中 x 是自变量, 函数的定义域是 R.
    (1)ar·as=ar+s (a>0, r, s∈Q);
    (2)ar÷as=ar-s (a>0, r, s∈Q);
    (3)(ar)s=ars (a>0, r, s∈Q);
    (4)(ab)r=arbr (a>0, b>0, r∈Q).
    (1) 定义域: R
    (2) 值 域: (0, +∞)
    (3) 过点(0, 1), 即 x=0 时, y=1.
    (4) 在 R 上是增函数.
    (4) 在 R 上是减函数.
    七、指数函数的图象和性质
    2.已知 2x+2-x=5, 求下列各式的值: (1) 4x+4-x; (2) 8x+8-x.
    解: (1) 4x+4-x=(2x+2-x)2-22x · 2-x
    (2) 8x+8-x=(2x+2-x)3-32x · 2-x(2x+2-x)
    =25-2=23;
    =125-15=110.
    3.已知 2a · 5b=2c · 5d=10, 求证: (a-1)(d-1)=(b-1)(c-1).
    证: 由已知 2a · 5b=10=2 · 5, 2c · 5d=10=2 · 5,
    ∴ 2a-1 · 5b-1=1, 2c-1 · 5d-1=1.
    ∴ 2(a-1)(d-1) · 5(b-1)(d-1) =1, 2(c-1)(b-1) · 5(d-1)(b-1) =1.
    ∴ 2(a-1)(d-1)=2(c-1)(b-1).
    ∴ (a-1)(d-1)=(b-1)(c-1).
    ∴ 2(a-1)(d-1) · 5(b-1)(d-1) =2(c-1)(b-1) · 5(d-1)(b-1).
    4.若关于 x 的方程 2a2x-2-7ax-1+3=0 有一个根是 x=2, 求 a 的值并求方程其余的根.
    t2-2xt+1=0,
    解法二: 将已知式整理得:
    6.已知函数 f(x)=3x 且 f-1(18)=a+2, g(x)=3ax-4x 的定义域为 [0, 1]. (1)求 g(x) 的解析式; (2)求 g(x) 的单调区间, 确定其增减性并用定义证明; (3)求 g(x) 的值域.
    ∴f(a+2)=3a+2=18.
    解: (1)∵f(x)=3x 且 f-1(18)=a+2,
    ∴g(x)=(3a)x-4x=2x-4x.
    即 g(x)=2x-4x.
    (2)令 t=2x, 则函数 g(x) 由 y=t-t2 及 t=2x 复合而得.
    由已知 x[0, 1], 则 t[1, 2],
    ∵t=2x 在 [0, 1] 上单调递增, y=t-t2 在 [1, 2] 上单调递减,
    g(x) 在 [0, 1] 上单调递减, 证明如下:
    ∴g(x) 的定义域区间 [0, 1] 为函数的单调递减区间. 
    对于任意的 x1, x2[0, 1], 且 x1g(x1)-g(x2)
    ∵0≤x1∴2x1-2x2<0 且 1-2x1-2x2<0.
    ∴ g(x1)-g(x2)
    ∴ g(x1)>g(x2).
    故函数 g(x) 在 [0, 1] 上单调递减.
    =(2x1-4x1)-(2x2-4x2)
    =(2x1-2x2)-(2x1-2x2)(2x1+2x2)
    =(2x1-2x2)(1-2x1-2x2)
    =(2x1-2x2)(1-2x1-2x2)>0.
    ∴ x[0, 1] 时有:
    解: (3)∵g(x) 在 [0, 1] 上单调递减,
    g(1)≤g(x)≤g(0).
    ∵g(1)=21-41=-2, g(0)=20-40=0,
    ∴ -2≤g(x)≤0 .
    故函数 g(x) 的值域为 [-2, 0].

    相关课件

    高中数学湘教版必修12.1指数函数教案配套ppt课件:

    这是一份高中数学湘教版必修12.1指数函数教案配套ppt课件,共12页。PPT课件主要包含了根式的概念,根式的性质,分数指数幂的意义,指数函数,课堂练习,典型例题,化简下列各式,∴a-10,以下同上,∴3a2等内容,欢迎下载使用。

    高中数学湘教版必修12.3幂函数教学课件ppt:

    这是一份高中数学湘教版必修12.3幂函数教学课件ppt,共28页。PPT课件主要包含了问题引入,练一练,1y4x,观察幂函数图象填表,探究2,探究1,一定义,四应用,幂函数的应用,谢谢指导等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map