2021学年3.1.2 指数函数教学设计
展开
这是一份2021学年3.1.2 指数函数教学设计,共9页。教案主要包含了 情境设置,归纳小结,例题讲解等内容,欢迎下载使用。
课题
2.1.2指数函数及其性质(1)
三
维
教
学
目
标
知识与
能力
1.通过实际问题了解指数函数的实际背景;(ABC)
2.理解指数函数的概念和意义,根据图象理解和掌握指数函数的性质;(ABC)
3.体会具体到一般数学讨论方式及数形结合的思想。(AB)
过程与
方法
展示函数图象,让学生通过观察,进而研究指数函数的性质
情感、
态度、
价值观
1.让学生了解数学来自生活,数学又服务于生活的哲理;(ABC)
2.培养学生观察问题,分析问题的能力。(AB)
教
学
内
容
分
析
教学
重点
指数函数的概念和性质及其应用
教学
难点
指数函数性质的归纳,概括及其应用
教 学 流 程 与 教 学 内 容
一、 情境设置
①在本章的开头,问题(1)中时间与GDP值中的
,请问这两个函数有什么共同特征.
②这两个函数有什么共同特征
,从而得出这两个关系式中的底数是一个正数,自变量为指数,即都可以用(>0且≠1来表示).
二.讲授新课
1.指数函数的定义
一般地,函数(>0且≠1)叫做指数函数,其中是自变量,函数的定义域为R.
提问:在下列的关系式中,哪些不是指数函数,为什么?
(1) (2) (3)
(4) (5) (6)
(7) (8) (>1,且)
小结:根据指数函数的定义来判断说明:因为>0,是任意一个实数时,是一个确定的实数,所以函数的定义域为实数集R.
若<0,如在实数范围内的函数值不存在.
若=1, 是一个常量,没有研究的意义,只有满足的形式才能称为指数函数,不符合.(AB)
2. 我们在学习函数的单调性的时候,主要是根据函数的图象,即用数形结合的方法来研究. 下面我们通过
先来研究>1的情况
用计算机完成以下表格,并且用计算机画出函数的图象
-2
1
2
4
y=2x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
y
0
再研究,0<<1的情况,用计算机完成以下表格并绘出函数的图象.
-2.00
1
2
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
y
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
y
0
从图中我们看出
通过图象看出实质是上的
3.讨论:的图象关于轴对称,所以这两个函数是偶函数,对吗?
②利用电脑软件画出的函数图象.
4.问题:1:从画出的图象中,你能发现函数的图象与底数间有什么样的规律.
从图上看(>1)与(0<<1)两函数图象的特征.
问题2:根据函数的图象研究函数的定义域、值域、特殊点、单调性、最大(小)值、奇偶性.
问题3:指数函数(>0且≠1),当底数越大时,函数图象间有什么样的关系。
图象特征
函数性质
>1
0<<1
>1
0<<1
向轴正负方向无限延伸
函数的定义域为R
图象关于原点和轴不对称
非奇非偶函数
函数图象都在轴上方
函数的值域为R+
函数图象都过定点(0,1)
=1
自左向右,
图象逐渐上升
自左向右,
图象逐渐下降
增函数
减函数
在第一象限内的图
象纵坐标都大于1
在第一象限内的图
象纵坐标都小于1
>0,>1
>0,<1
在第二象限内的图
象纵坐标都小于1
在第二象限内的图
象纵坐标都大于1
<0,<1
<0,>1
5.利用函数的单调性,结合图象还可以看出:(AB)
(1)在(>0且≠1)值域是
(2)若
(3)对于指数函数(>0且≠1),总有
(4)当>1时,若<,则<;
例题:
例1:(P66 例6)已知指数函数(>0且≠1)的图象过点(3,π),求
分析:要求再把0,1,3分别代入,即可求得
提问:要求出指数函数,需要几个条件?
课堂练习:P68 练习:第1,2,3题
补充练习:1、函数
2、当
解(1)
(2)(-,1)
例2:求下列函数的定义域:
(1) (2)
分析:类为的定义域是R,所以,要使(1),(2)题的定义域,保要使其指数部分有意义就得 .
三、归纳小结
1、理解指数函数
2、解题利用指数函数的图象,可有利于清晰地分析题目,培养数型结合与分类讨论的数学思想 .
课
后
学
习
作业:P69 习题2.1 A组第5、6题
教
学
反
思
本节课主要通过函数图象来研究指数函数的性质,学生的作图能力还是很差,在以后的教学过程中一定要加强作函数图象的练习。
课题
2.1.2指数函数及其性质(2)
三
维
教
学
目
标
知识与
能力
1.通过实际问题了解指数函数的实际背景;(ABC)
2.理解指数函数的概念和意义,根据图象理解和掌握指数函数的性质;(ABC)
3.体会具体到一般数学讨论方式及数形结合的思想。(AB)
过程与
方法
展示函数图象,让学生通过观察,进而研究指数函数的性质(AB)
情感、
态度、
价值观
1.让学生了解数学来自生活,数学又服务于生活的哲理;(ABC)
2.培养学生观察问题,分析问题的能力。(AB)
教
学
内
容
分
析
教学
重点
指数函数的概念和性质及其应用
教学
难点
指数函数性质的归纳,概括及其应用
教 学 流 程 与 教 学 内 容
一、复习指数函数的图象和性质
二、例题讲解:
1.例1:(P66例7)比较下列各题中的个值的大小
(1)1.72.5 与 1.73
( 2 )与
( 3 ) 1.70.3 与 0.93.1
解法1:用数形结合的方法,如第(1)小题,用图形计算器或计算机画出的图象,在图象上找出横坐标分别为2.5, 3的点,显然,图象上横坐标就为3的点在横坐标为2.5的点的上方,所以 .
解法2:用计算器直接计算:
所以,
解法3:由函数的单调性考虑
因为指数函数在R上是增函数,且2.5<3,所以,
仿照以上方法可以解决第(2)小题 .
注:在第(3)小题中,可以用解法1,解法2解决,但解法3不适合 .
由于不能直接看成某个函数的两个值,因此,在这两个数值间找到1,把这两数值分别与1比较大小,进而比较1.70.3与0.93.1的大小 .
2.思考:(AB)
(1)已知按大小顺序排列.
(2)比较(>0且≠0).
指数函数不仅能比较与它有关的值的大小,在现实生活中,也有很多实际的应用.
3. 例2(P67例8)截止到1999年底,我们人口哟13亿,如果今后,能将人口年平均均增长率控制在1%,那么经过20年后,我国人口数最多为多少(精确到亿)?
分析:可以先考试一年一年增长的情况,再从中发现规律,最后解决问题:
1999年底 人口约为13亿
经过1年 人口约为13(1+1%)亿
经过2年 人口约为13(1+1%)(1+1%)=13(1+1%)2亿
经过3年 人口约为13(1+1%)2(1+1%)=13(1+1%)3亿
经过年 人口约为13(1+1%)亿
经过20年 人口约为13(1+1%)20亿
解:设今后人口年平均增长率为1%,经过年后,我国人口数为亿,则
当=20时,
答:经过20年后,我国人口数最多为16亿.
小结:类似上面此题,设原值为N,平均增长率为P,则对于经过时间后总量,>0且≠1)的函数称为指数型函数 .
思考:P68探究:
(1)如果人口年均增长率提高1个平分点,利用计算器分别计算20年后,33年后的我国人口数 .
(2)如果年平均增长率保持在2%,利用计算器2020~2100年,每隔5年相应的人口数 .
(3)你看到我国人口数的增长呈现什么趋势?
(4)如何看待计划生育政策?
4.课堂练习
Y=
(1)右图是指数函数① ② ③ ④的图象,判断与1的大小关系;
(2)设其中>0,≠1,确定为何值时,有:
① ②>
(3)用清水漂洗衣服,若每次能洗去污垢的,写出存留污垢与漂洗次数的函数关系式,若要使存留的污垢,不超过原有的1%,则少要漂洗几次(此题为人教社B版101页第6题).
三、归纳小结:本节课研究了指数函数性质的应用,关键是要记住>1或0<<时的图象,在此基础上研究其性质 .本节课还涉及到指数型函数的应用,形如(a>0且≠1)
课
后
学
习
P69 A组第 7 ,8 题 P70 B组 第 1,4题
教
学
反
思
应用题一直都是学生学习的难点,关键要分析清楚数量关系。
相关教案
这是一份高中数学苏教版必修1第3章 指数函数、对数函数和幂函数3.1 指数函数3.1.2 指数函数教案,共4页。
这是一份高中数学苏教版必修13.1.2 指数函数教案,共3页。教案主要包含了定义,图像及性质,例题,作业等内容,欢迎下载使用。
这是一份苏教版必修1第3章 指数函数、对数函数和幂函数3.1 指数函数3.1.2 指数函数教案及反思,共3页。教案主要包含了指数函数的概念,指数函数的图象和性质,典型例题等内容,欢迎下载使用。