数学九年级上册2.4 圆周角教案设计
展开圆周角
二、知识准备(一)、知识再现:
1.如图,点A、B、C、D在⊙O上,若∠BAC=40°,则
(1)∠BOC= °,理由是 ;
(1)∠BDC= °,理由是 .
2.如图,在△ABC中,OA=OB=OC,则∠ACB= °.
意图:复习圆周角的性质及直角三角形的识别方法.
(二)、预习检测:
1.如图,在⊙O中,△ABC是
等边三角形,AD是直径,
则∠ADB= °,∠DAB= °.
2. 如图,AB是⊙O的直径,若AB=AC,求证:BD=CD.
三、学习内容
1.如图,BC是⊙O的直径,它所对的圆周角是锐角、钝角,还是直角?为什么?
(引导学生探究问题的解法)
2.如图,在⊙O中,圆周角∠BAC=90°,弦BC经过圆心吗?为什么?
3.归纳自己总结的结论:
(1)
(2)
注意:(1)这里所对的角、90°的角必须是圆周角;
(2)直径所对的圆周角是直角,在圆的有关问题中经常遇到,同学们要高度重视.
4、例题分析
例题1.如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=60°,
∠ADC=50°,求∠CEB的度数.
【解析】利用直径所对的圆周角是直角的性质
例题2.如图,△ABC的顶点都在⊙O上,AD是△ABC的高,AE是⊙O的直径.△ABE与△ACD相似吗?为什么?
利用直径所对的圆周角是直角的性质解题.
变式:如图,△ABF与△ACB相似吗?
例题3. 如图, A、B、E、C四点都在⊙O上,AD是△ABC的高,∠CAD
=∠EAB,AE是⊙O的直径吗?为什么?
【解析】 利用 90°的圆周角所对的弦是直径.
四、知识梳理
1.两条性质: 。
2. 直径所对的圆周角是直角是圆中常见辅助线.
五、达标检测
1、如图,AB是⊙O的直径,∠A=10°,则∠ABC=________.
2、如图,AB是⊙O的直径,CD是弦,∠ACD=40°,则∠BCD=_______,∠BOD=_______.
3、如图,AB是⊙O的直径,D是⊙O上的任意一点(不与点A、B重合),延长BD到点C,使DC=BD,判断△ABC的形状:__________。
4、如图,AB是⊙O的直径,AC是弦,∠BAC=30°,则AC的度数是( )
A. 30° B. 60° C. 90° D. 120°
5、如图,AB、CD是⊙O的直径,弦CE∥AB. 弧BD与弧BE相等吗?为什么?
6、如图,AB是⊙O的直径,AC是⊙O的弦,以OA为直径的⊙D与AC相交于点E,AC=10,求AE的长.
7、如图,点A、B、C、D在圆上,AB=8,BC=6,AC=10,CD=4.求AD的长.
8、利用三角尺可以画出圆的直径,为什么?你能用这种方法确定一个圆形工件的圆心吗?
9如图,△ABC的3个顶点都在⊙O上,直径AD=4,∠ABC=∠DAC,求AC的长。
10、如图,AB是⊙O的直径,CD⊥AB,P是CD上的任意一点(不与点C、D重合),∠APC与∠APD相等吗?为什么?
11、如图,AB是⊙O的直径,CD是⊙O的弦,AB=6, ∠DCB=30°,求弦BD的长。
12、如图,△ABC的3个顶点都在⊙O上,D是AC的中点,BD交AC于点E,△CDE与△BDC相似吗?为什么?
13、如图,在⊙O中,直径AB=10,弦AC=6,∠ACB的平分线交⊙O于点D。求BC和AD的长
教后反思:
初中数学苏科版九年级上册2.4 圆周角教学设计及反思: 这是一份初中数学苏科版九年级上册2.4 圆周角教学设计及反思,共3页。教案主要包含了知识准备复习巩固,学习内容,知识梳理,达标检测等内容,欢迎下载使用。
初中数学2.4 圆周角教案设计: 这是一份初中数学2.4 圆周角教案设计,共3页。
苏科版九年级上册2.5 直线与圆的位置关系教案: 这是一份苏科版九年级上册2.5 直线与圆的位置关系教案,共4页。