搜索
    上传资料 赚现金
    英语朗读宝

    浙教初中数学九上《4.3 相似三角形》word教案 (1)

    浙教初中数学九上《4.3 相似三角形》word教案 (1)第1页
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙教版九年级上册4.3 相似三角形教案设计

    展开

    这是一份浙教版九年级上册4.3 相似三角形教案设计,共3页。
    1.了解相似三角形的概念,会表示两个三角形相似.
    2.能运用相似三角形的概念判断两个三角形相似.
    3.理解“相似三角形的对应角相等,对应边成比例”的性质.
    重点和难点:
    1.本节教学的重点是相似三角形的概念
    2.在具体的图形中找出相似三角形的对应边,并写出比例式,需要学生具有一定的分辨能力,是本节教学的难点.
    知识要点:
    1、对应角相等,对应边成比例的两个三角形叫做相似三角形.
    2、相似三角形的对应角相等,对应边成比例.
    3、相似三角形对应边的比,叫做两个相似三角形的相似比(或相似系数)
    重要方法:
    1、全等三角形是相似三角形的特殊情况,它的相似比是1.
    2、相似三角形中,利用对应角寻找对应边;反过来利用对应边寻找对应角.
    3、书写相似三角形时,需要把对应顶点的字母写在对应的位置上.
    教学过程
    一.创设情境,导入新课
    1.课件出示:①国旗上的☆,②同一底片不同尺寸的照片.以上图形之间可以通过怎样的图形变换得到?
    2.经过相似变换后得到的像与原像称为相似图形.那么将一个三角形作相似变换后所得的像与原像称为相似三角形
    二.合作学习,探索新知
    1.合作学习
    如图1,在方格纸内先任意画一个△ABC,然后画出△ABC经某一相似变换(如放大或缩小若干倍)后得到像△A′B′C′(点A′、B′、C′分别对应点A、B、C).
    问题讨论1:△A′B′C′与△ABC对应角之间有什么关系?
    问题讨论2:△A′B′C′与△ABC对应边之间有什么关系?
    学生相互比较得到结论:对应角相等,对应边成比例.
    2.由合作学习定义相似三角形的概念
    (1)相似三角形:一般地,对应角相等,对应边成比例的两个三角形,叫做相似三角形
    (2)表示:相似用符号“∽”来表示,读作“相似于”
    如△A′B′C′与△ABC相似,记做“△A′B′C′∽△ABC” .
    注意:在表示三角形相似时,一般把对应顶点的字母写在对应的位置上
    (3)定义的几何语言表述:
    ∵∠A′=∠A,∠B′=∠B,∠C′=∠C, EQ \F(A′B′,AB) = EQ \F(A′C′,AC) = EQ \F(C′B′,CB)
    ∴△A′B′C′∽△ABC
    3.结合定义探求性质
    (1)性质:相似三角形的对应角相等,对应边成比例
    (由学生根据定义得出,理解定义的双重性,既可以用来判定两个三角形相似,同时,其本身又是三角形相似的一个性质)
    (2)相似比(相似系数):相似三角形对应边的比,叫做两个相似三角形的相似比(或相似系数)
    注意:求两个相似三角形的相似比,应注意这两个三角形的前后顺序.
    如图,△A′B′C′与△ABC的相似比为 EQ \F(1,2) (k),△ABC与△A′B′C′的相似比为2( EQ \F(1,k) )
    4.问题探究:
    问题一:两个直角三角形一定相似吗?为什么?
    问题二:两个等腰三角形一定相似吗?为什么?
    问题三:两个等腰直角三角形一定相似吗?为什么?
    问题四:两个等边三角形一定相似吗?为什么?
    问题五:两个全等三角形一定相似吗?为什么?变形:相似比为1的两个三角形全等吗?
    问题六:如果两个全等三角形中的一个与第三个三角形相似,那么这两个全等三角形的另一个也与第三个三角形相似吗?为什么?
    (有学生同桌或小组合作讨论,说明原因或举反例说明)
    提示说明:本节课要说明两个三角形相似,应结合定义说明理由,也就是说要同时满足对应角相等,对应边成比例;但要说明不相似,则只要否定其中一个条件即可.
    5.课堂练习:完成课本“做一做”
    分析订正时可作如下启发:要写出△ADE与△ABC的对应角与对应边成比例的比例式,关键在于找出这两个三角形对应的边与角,因此,也只需找出相对应的顶点字母即可
    三.学以致用,体验成功
    1.讲解例1:
    已知:如图2,D、E分别是AB、AC边的中点,求证:△ADE∽△ABC
    分析:要说明△ADE∽△ABC,根据三角形相似的定义,应说明这两个
    三角形的三个对应角对应相等,三条边对应成比例.
    证明:∵D,E分别是AB,AC的中点,
    ∴DE∥BC,DE= EQ \F(1,2) BC,
    ∴∠ADE=∠B,∠AED=∠C
    在△ADE和△ABC中
    ∠ADE=∠B
    ∠AED=∠C
    ∠A=∠A
    EQ \F(DE,BC) = EQ \F(AD,AB) = EQ \F(AE,AC) = EQ \F(1,2)
    △ADE∽△ABC(相似三角形的定义)
    说明:根据定义说明两个三角形相似,必须说明这两个三角形同时满足对应角相等,对应边成比例.缺一不可.
    2.讲解例2:
    如图,D、E分别是△ABC的AB,AC边上的点,△ABC∽△ADE.已知AD∶DB=1∶2,BC=9cm,求DE的长.
    分析:由于△ABC∽△ADE,并且DE与BC是一对对应边,因此,
    要求DE的长,只要知道BC的长(已知)与这两个三角形的
    相似比即可.
    由学生口答过程,教师板书示范,并启发学生如何去分析问题,
    解决问题.
    四.巩固应用,拓展延伸
    1、完成课本“课内练习”P1051、2、3
    2.完成课本作业题P105~1061、2、3、4、5、6
    3.如图,有一块呈三角形形状的草坪,其中一边的长是20cm.在这个草坪的示意图上,这条边长为5cm,其他两边的长度都为3.5cm.求该草坪其他两边的实际长度.
    (可根据学生的实际情况选择完成)
    五.归纳小结,反思提高
    试谈谈通过本节课的学习,你有哪些收获与感想
    六.布置作业
    作业本

    相关教案

    浙教版九年级上册4.3 相似三角形教案:

    这是一份浙教版九年级上册4.3 相似三角形教案,共6页。教案主要包含了教学目标,教学重点,教学难点,教学过程等内容,欢迎下载使用。

    初中数学浙教版九年级上册4.5 相似三角形的性质及应用教学设计及反思:

    这是一份初中数学浙教版九年级上册4.5 相似三角形的性质及应用教学设计及反思,共5页。教案主要包含了问题情境,新课,小结,作业等内容,欢迎下载使用。

    初中数学浙教版九年级上册4.3 相似三角形教案设计:

    这是一份初中数学浙教版九年级上册4.3 相似三角形教案设计,共4页。教案主要包含了教学目标,教学重点,教学难点,教学过程等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map