浙江省湖州市八校联盟2018-2019学年高一上学期期中联考数学试题含解析
展开这是一份浙江省湖州市八校联盟2018-2019学年高一上学期期中联考数学试题含解析,共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
浙江省湖州市八校联盟2018-2019学年高一上学期期中联考数学试题
一、选择题(本大题共10小题,共40.0分)
1.设全集U={1,2,3},集合A={1,2},则∁UA等于( )
A. B. C. D.
【答案】A
【解析】
【分析】
根据全集与补集的概念即可求得解。
【详解】全集U={1,2,3},集合A={1,2}
根据集合补集运算可知
∁UA=
所以选A
【点睛】本题考查了集合补集的基本概念和运算,属于基础题。
2.下列函数中,定义域是R且为增函数的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据定义域及各个函数单调性即可判断出选项。
【详解】对于A,函数为减函数,所以排除A
对于B,函数定义域为正数,不是R,所以排除B
对于D,函数定义域为x≠0,所以排除D
对于C,函数 定义域为R,且为增函数,所以C正确
所以选C
【点睛】本题考查了函数的定义域及函数单调性的应用,属于基础题。
3.若幂函数y=f(x)的图象经过点(3,),则f(2)=
A. 2 B.
C. D. 4
【答案】B
【解析】
【分析】
设出幂函数的解析式,将点代入,求得的值,即求得幂函数解析式,再将代入解析式求得相应的函数值.
【详解】设幂函数y=f(x)=xα,其函数图象经过点(3,),∴3α=,
解得α=,∴f(x)=,∴f(2)=.故选B.
【点睛】本小题主要考查幂函数的解析式的求法,考查已知函数解析式求函数值,属于基础题.
4.函数的零点在区间( ).
A. B. C. D.
【答案】B
【解析】
分析:由零点存在定理直接跑到即可.
详解:∵,,
∴函数的零点在区间.故选:.
点睛:本题考查零点存在定理的应用,属基础题.
5.设f:x→ln|x|是集合M到集合N的映射,若N={0,1},则M不可能是( )
A. B. 1, C. D. 1,
【答案】D
【解析】
【分析】
根据映射概念及集合N={0,1},即可求得M的取值。
【详解】因为x→ln|x|,所以ln|x|=0时,x=1或x=-1
ln|x|=1时,x=e或x=-e
所以x的取值集合为
所以A、B、C选项都为正确选项,D为错误
所以选D
【点睛】本题考查了集合映射的概念及简单应用,已知对数值求自变量的解,属于基础题。
6.下列等式一定正确的是( )
A. B.
C. D.
【答案】C
【解析】
【分析】
根据对数函数的定义域可判断选项,根据指数幂的运算法则可判断选项.
【详解】A,若x,y均为负数,不对;
B,根据指数幂的运算性质,2m×2n=2m+n,B不对;
C,根据指数幂的运算性质,C正确;
D,若x为负数,不对.故选C.
【点睛】本题主要考查对数的运算对数函数的定义域,考查了指数幂的运算法则,意在考查对基础知识掌握的熟练程度,属于中档题.
7.设a=ln2,b=(lg2)2,c=lg(lg2),则( )
A. B. C. D.
【答案】A
【解析】
【分析】
根据对数函数图象,可得,进而结合函数图象即可比较大小。
【详解】由对数函数图象可知,
所以
所以
所以选A
【点睛】本题考查了对数函数的图象,对数比较大小,属于基础题。
8. 若f(x)是偶函数,且当x∈[0,+∞)时,f(x)=x-1,则f(x-1)<0的解集是( )
A. (-1,0) B. (-∞,0)∪(1,2)
C. (1,2) D. (0,2)
【答案】D
【解析】
根据函数的性质作出函数f(x)的图象如图.把函数f(x)向右平移1个单位,得到函数f(x-1),如图,则不等式f(x-1)<0的解集为(0,2),选D.
9.已知1是函数f(x)=ax2+bx+c(a>b>c)的一个零点,若存在实数x0.使得f(x0)<0.则f(x)的另一个零点可能是( )
A. B. C. D.
【答案】B
【解析】
【分析】
由题意可得a>b>c,则a>0,c<0,且|a|>|b|,得,分类讨论即可得到另外一个零点。
【详解】∵1是函数f(x)=ax2+bx+c的一个零点,
∴a+b+c=0,
∵a>b>c,∴a>0,c<0,且|a|>|b|,得
函数f(x)=ax2+bx+c的图象是开口向上的抛物线,其对称轴方程为
所以
画出函数大致图象如图:
当时,函数的另一零点x1∈[-1,0),x0∈(-1,1)
则x0-3∈(-4,-2), ,,
当时,函数的另一零点x1∈(-2,-1),x0∈(-2,1)
则x0-3∈(-5,-2), ,,
综上可知f(x)的另一个零点可能是
所以选B
【点睛】本题考查根的存在性及根的个数判断,考查数形结合的解题思想方法及分类讨论的数学思想方法,属于中档题。
10.已知二次函数f(x)=x2+bx+c,若对任意的x1,x2∈[-1,1],有|f(x1)-f(x2)|≤6,则b的取值范围是( )
A. B. C. D.
【答案】C
【解析】
【分析】
若对任意的x1,x2∈[-1,1],有|f(x1)-f(x2)|≤6,则当x1,x2∈[-1,1],函数值的极差不大于6,进而可得答案。
【详解】因为二次函数
所以对称轴为
当即时,函数在[-1,1]递增,
f(x)min=f(-1)=1-b+c,f(x)max=f(1)=1+b+c,
故f(-1)-f(1)=-2b,
|f(1)-f(-1)|=|2b|≤6恒不成立,
当时即b<-2时,
|f(1)-f(-1)|=|2b|≤6恒不成立,
当时即-2≤b≤2时,
,且
即且
解得-3≤b≤3,
故b的取值范围是[-3,3],
所以选C.
【点睛】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键,属于难题。
二、填空题(本大题共7小题,共36.0分)
11.已知lg23=a,则lg29=______(用a表示),2a=______.
【答案】 (1). 2a (2). 3
【解析】
【分析】
根据对数运算化简即可得。
【详解】
,所以
【点睛】本题考查了对数的化简,对数与指数式的互换,属于基础题。
12.计算______;函数值域是______
【答案】 (1). 9 (2). (0,]
【解析】
【分析】
根据指数与对数的化简即可得到解;对二次函数配方,根据复合函数单调性判断,即可求得值域。
【详解】(1)、
(2)、
所以 ,而指数函数值大于0
所以值域为(0,]
【点睛】本题考查了指数与对数式的化简求值,复合函数值域的求法,属于基础题。
13.已知函数f(x),g(x),分别由下表给出
则g(1)的值为______;当g[f(x)]=2时,x=______.
【答案】 (1). 3 (2). 1
【解析】
【分析】
根据表格,可易得g(1)=3;而根据表格,g[2]=2,从而依据f(x)=2即可求得x的值。
【详解】从以上表格可知,当x=1时,g(1)=3
从表中可知,g[2]=2
因而f(x)=2
从表可知,当x=1时,f(1)=2
所以x的值为1
【点睛】本题考查了函数表示方法中的列表法及求对应的函数值,属于基础题。
14.已知f(x)=ax2+(b-1)x+2a是定义域为[a-1,a]的偶函数,则a-b的值为______;函数g(x)=lga(-bx2+a)的单调递增区间为______
【答案】 (1). (2). [0,)
【解析】
【分析】
根据偶函数关于y轴对称,且定义域关于原点中心对称,可求得a、b的值;进而利用复合函数单调性求得单调递增区间。
【详解】因为f(x)=ax2+(b-1)x+2a是偶函数
所以b=1
定义域为[a-1,a]
所以a-1+a=0,所以a=
(1)、a-b=
(2)、
定义域 ,解得
令,则单调递减区间为
由复合函数单调性“同增异减”可知,
的单调递增区间为[0,)
【点睛】本题考查了函数奇偶性及单调性的综合应用,复合函数单调区间的求法,注意对数函数定义域的要求,属于基础题。
15.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+m,则f(﹣1)= .
【答案】-3
【解析】
试题分析:是奇函数,所以.所以.
考点:函数的奇偶性.
16.设2a=5b=m,且=2,则m=______.
【答案】
【解析】
【分析】
根据指数与对数互换式,用m表示出a、b,代入表达式化简即可求得m。
【详解】因为2a=5b=m
则
利用换底公式可得
因为=2,即+=2
代入化简得
,所以解得
【点睛】本题考查了对数与指数的互换,对数的运算及化简应用,属于中档题。
17.若函数f(x)=(1-x2)(x2+bx+c)的图象关于直线x=-2对称,则b+c的值是______.
【答案】23
【解析】
【分析】
根据函数f(x)=0,即(1-x2)(x2+bx+c)=0,其中两个零点为1,-1,图象关于直线x=-2对称,可得另外两个零点,即可求出b,c的值。
【详解】由题意,令函数f(x)=0,即(1-x2)(x2+bx+c)=0,
其中两个零点为x=1,x=-1,
图象关于直线x=-2对称,
那么另外两个零点分别为x=-3,x=-5
即x2+bx+c=0的两个根分别为x=-3,x=-5.
由韦达定理:-b=-3-5,即b=8
c=(-3)×(-5)=15
则b+c=23.
【点睛】本题考查了对称问题,利用零点求解对称点,转化为二次函数零点求解;属于中档题。
三、解答题(本大题共5小题,共74.0分)
18.已知集合A={x|m-2<x<m+1},B={x|1<x<5}.
(Ⅰ)若m=1,求A∪B;
(Ⅱ)若A∩B=A,求实数m的取值范围.
【答案】(Ⅰ){x|-1<x<5};(Ⅱ)[3,4].
【解析】
【分析】
(Ⅰ)将m=1代入,可得集合A,根据并集的运算即可求得A∪B。
(Ⅱ)由A∩B=A可知集合A为集合B的子集;根据子集关系列出关于m的不等式,解不等式即可。
【详解】(Ⅰ) 由m=1得,A={x|-1<x<2};
∴A∪B={x|-1<x<5};
(Ⅱ)∵A∩B=A;
∴A⊆B;
∴;
解得3≤m≤4;
∴实数m的取值范围为[3,4].
【点睛】本题考查了集合的基本运算,子集的概念及含参的求法,属于基础题。
19.已知函数f(x)=+lg(3x)的定义域为M.
(Ⅰ)求M;
(Ⅱ)当x∈M时,求g(x)=4x-2x+1+2的值域.
【答案】(Ⅰ)(-1,2];(Ⅱ)[1,10].
【解析】
【分析】
(Ⅰ)根据二次根式有意义条件,及对数函数真数大于0的条件,列出不等式,解不等式组即可得到定义域M。
(Ⅱ)将g(x)配方,化为关于2x的二次函数型函数,根据x的取值范围,即可得到函数的值域。
【详解】(Ⅰ)要使f(x)有意义,则,
∴-1<x≤2,
∴M=(-1,2],
(Ⅱ)g(x)=4x-2x+1+2=(2x)2-2•2x+2=(2x-1)2+1;
∵x∈(-1,2];
∴;
∴2x=1,即x=0时,g(x)min=1;
2x=4,即x=2时,g(x)max=10;
∴g(x)的值域为[1,10].
【点睛】本题考查了定义域的求法,指数型二次函数值域的求解,属于基础题。
20.已知函数f(x)=(k∈R)
(Ⅰ)若该函数是偶函数,求实数k及f(lg32)的值;
(Ⅱ)若函数g(x)=x+lg3f(x)有零点,求k的取值范围.
【答案】(Ⅰ); (Ⅱ)k<1.
【解析】
【分析】
(Ⅰ)根据偶函数定义f(-x)=f(x),代入函数化简即可求得k的值,进而得到函数解析式,再将x=lg32代入,根据对数恒等式的化简即可求得解。
(Ⅱ)将f(x)的表达式代入函数g(x)=x+lg3f(x)中,化简为g(x) =lg3(9x+k),根据零点意义,可得9x+k=1。根据9x>0,即可求得k的取值范围。
【详解】(Ⅰ) 函数f(x)=即f(x)=3x+k•3-x是偶函数,
可得对任意x∈R,都有f(-x)=f(x),
即3-x+k•3x=3x+k•3-x,
即为(k-1)(3x-3-x)=0,而x∈R,则k=1,
则f(x)=3x+3-x,
f(lg32)=+=2+=;
(Ⅱ)g(x)=x+lg3f(x)=lg33x+lg3=lg3(9x+k),
由lg3(9x+k)=0,得9x+k=1,即1-k=9x,
可得1-k>0,
即k<1时,函数有零点.
【点睛】本题考查了函数的性质及指数式的化简,对数式的化简及不等式的应用,属于中档题。
21.已知f(x)=ax2+bx+c(a≠0),满足条件f(x+1)-f(x)=2x(x∈R),且f(0)=1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)当x≥0时,f(x)≥mx-3恒成立,求实数m的取值范围.
【答案】(Ⅰ)f(x)=x2-x+1;(Ⅱ)(-∞,3].
【解析】
【分析】
(Ⅰ)根据f(0)=1及f(x+1)-f(x)=2x,代入解析式,根据对应位置系数相等,即可求得a、b、c的值,得到f(x)的解析式。
(Ⅱ)将解析式代入不等式,构造函数g(x)=x2-(m+1)x+4,即求当x∈[0,+∞)时g(x) 4≥0恒成立。讨论g(x)的对称轴x=与0的大小关系,根据对称及单调性即可求得m的取值范围。
【详解】(Ⅰ)由f(0)=1得,c=1,
由f(x+1)-f(x)=2x,得a(x+1)2+b(x+1)+1-(ax2+bx+c)=2x
化简得,2ax+a+b=2x,
所以:2a=2,a+b=1,
可得:a=1,b=-1,c=1,
所以f(x)=x2-x+1;
(Ⅱ)由题意得,x2-x+1≥mx-3,x∈[0,+∞)恒成立.
即:g(x)=x2-(m+1)x+4≥0,x∈[0,+∞)恒成立.
其对称轴x=,
当≤0,即m≤-1时,g(x)在(0,+∞)上单调递增,
g(0)=4>0
∴m≤-1成立
②当>0时,
满足
计算得:-1<m≤3
综上所述,实数m的取值范围是(-∞,3].
【点睛】本题考查了二次函数解析式的求法,二次函数对称轴、单调性与恒成立问题的综合应用,属于中档题。
22.已知函数f(x)=kax-a-x(a>0且a≠1)是R上的奇函数.
(Ⅰ)求常数k的值;
(Ⅱ)若a>1,试判断函数f(x)的单调性,并加以证明;
(Ⅲ)若a=2,且函数g(x)=a2x+a-2x-2mf(x)在[0,1]上的最小值为1,求实数m的值.
【答案】(Ⅰ)k=1; (Ⅱ)见解析; (Ⅲ)m=1.
【解析】
【分析】
(Ⅰ)根据定义域为R上的奇函数满足f(0)=0,代入即可求得k的值。
(Ⅱ)利用定义法,设出x1、x2,通过做差法判断与0的大小关系即可证明单调性。
(Ⅲ)将a的值代入表达式,化简即可得g(x)=(2x-2-x)2-2m(2x-2-x)+2,利用换元法令t=2x-2-x,由x的范围求得t的范围。将x的函数转化为关于t的二次函数,构造h(t)=(t-m)2+2-m2,讨论m的取值范围,进而利用最小值求得m的值。
【详解】(Ⅰ)根据题意,函数f(x)=kax-a-x(a>0且a≠1)是R上的奇函数,
则f(0)=k-1=0,解可得k=1,
当k=1时,f(x)=ax-a-x,为奇函数,
故k=1.
(Ⅱ)根据题意,设x1<x2,
f(x1)-f(x2)=(-)-(-)=(-)(1+),
又由x1<x2,
则(-)<0,(1+)>0,
则f(x1)-f(x2)<0,
故函数f(x)为R上的增函数;
(Ⅲ)根据题意,若a=2,则函数g(x)=a2x+a-2x-2mf(x)
=22x+2-2x-2m(2x-2-x)
=(2x-2-x)2-2m(2x-2-x)+2,
令t=2x-2-x,又由x∈[0,1],则t∈[0,],
则h(t)=t2-2mt+2=(t-m)2+2-m2,t∈[0,],
①,当m≤0时,h(t)min=h(0)=2≠1,不符合题意;
②,当0<m<,h(t)min=h(m)=2-m2=1,
解可得m=±1,
又由0<m<,则m=1;
③,当m≥时,h(t)min=h()=-3m=1,
解可得m=<,不符合题意,
综合可得:m=1.
【点睛】本题考查了利用定义判断函数的单调性,换元法求函数的最值,分类讨论二次函数的对称轴与最值的关系,综合性强,属于难题。
x
1
2
3
f(x)
2
1
1
x
1
2
3
g(x)
3
2
1
相关试卷
这是一份2023-2024学年浙江省台金七校联盟高一上学期11月期中联考数学试题(含解析),共16页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年浙江省台金七校联盟高一上学期11月期中联考数学试题(含解析),共16页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年浙江省嘉兴市八校联盟高一上学期期中联考数学试题(含解析),共14页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。