所属成套资源:2022年中考数学总复习 讲解(含答案)
2022年中考数学总复习第5讲《二次根式及其运算》讲解(含答案) 学案
展开这是一份2022年中考数学总复习第5讲《二次根式及其运算》讲解(含答案) 学案,共9页。学案主要包含了解后感悟,探索规律题,方法与对策,考点概要,考题体验,知识引擎,例题精析,变式拓展等内容,欢迎下载使用。
第5讲 二次根式及其运算
1.二次根式的有关概念
考试内容 | 考试 要求 | |
二次 根式 | 一般地,形如( )的式子叫做二次根式. | a |
最简二 次根式 | 必须同时满足:(1)被开方数中不含能开得尽方的因数或因式;(2)被开方数的因数是整数,因式是整式(分母中不应含有根号). |
2.二次根式的性质
考试内容 | 考试 要求 | |
两个重要的性质 | ()2=a(a____________________); =|a|= | a |
积的算术平方根 | =·(a≥0,b≥0). | |
商的算术平方根 | =(a≥0,b>0). |
3.二次根式的运算
考试内容 | 考试 要求 | |
二次根式的加减 | 先将各根式化为 ,然后合并被开方数 的二次根式. | b |
二次根式的乘法 | ·= (a≥0,b≥0). | |
二次根式的除法 | = (a≥0,b>0). | |
二次根式的混合运算 | 与实数的运算顺序相同,先算乘方,再算 ,最后算加减,有括号的先算括号里面的(或先去括号). |
考试内容 | 考试 要求 | |
基本 方法 | 1.整式运算法则也适用于二次根式的运算. | c |
2.估算一个根号表示的无理数可用“逐步逼近”的方法,即首先找出与该数邻近的两个完全平方数,可估算出该无理数的整数部分,然后再取一位小数进一步估算即可. | ||
3.绝对值:|a|;偶次幂:a2n;非负数的算术平方根:(a≥0)是常见的三种非负数形式.非负数具有以下两条重要性质:①非负数形式有最小值为零;②几个非负数的和等于零,那么每个非负数都等于零. |
1.(·湖州)4的算术平方根是( )
A.±2 B.2 C.-2 D.
2.(·宁波)要使二次根式有意义,则x的取值范围是( )
A.x≠3 B.x>3 C.x≤3 D.x≥3
3.(·杭州)下列各式变形中,正确的是( )
A.x2·x3=x6
B.=|x|
C.÷x=x-1
D.x2-x+1=+
4.(·宁波)实数-8的立方根是____________________.
5.(·湖州)计算:2×(1-)+.
【问题】下列各式已给出计算结果:
①-=; ②=-3;③×=; ④÷=4
(1)其中正确的是____________;
(2)对于错误的结果,请给出正确答案;
(3)通过以上的解答,联想二次根式有哪些性质、运算法则?
【归纳】通过开放式问题,归纳、疏理二次根式的性质和运算法则,以及注意的问题.
类型一 平方根、算术平方根、立方根
(1)(·黄冈)9的平方根是( )
A.±3 B.± C.3 D.-3
(2)(·黄冈)16的算术平方根是________.
(3)(·宁波)实数-27的立方根是________.
【解后感悟】一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根;注意算术平方根易与平方根的概念混淆而导致错误;开立方和立方互为逆运算是解题的关键.
1.(1)(·唐山模拟)下列式子中,计算正确的是( )
A.-=-0.6 B.=-13
C.=±6 D.-=-3
(2)如果一个正数的两个平方根为a+1和2a-7,则这个数为____________________.
类型二 二次根式的有关概念与性质
(1)式子有意义的x的取值范围是________;
(2)(·邵阳模拟)将化成最简二次根式是________.
(3)计算:=________.
【解后感悟】(1)此类有意义的条件问题主要是根据:①二次根式的被开方数大于或等于零;②分式的分母不为零列不等式组,转化为求不等式组的解集.(2)此题根据二次根式的性质化简,是解本题的关键.
2.(1)(·荆州)下列根式是最简二次根式的是( )
A. B. C. D.
(2)k、m、n为三个整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确( )
A.k<m=n B.m=n<k
C.m<n<k D.m<k<n
(3)(·金华)能够说明“=x不成立”的x的值是____________________(写出一个即可).
(4)若实数a、b满足+=0,则=____________________.
(5)若整数x满足|x|≤3,则使为整数的x的值是____________________(只需填一个).
类型三 二次根式的运算与求值
(1)(·滨州)下列计算:(1)()2=2,(2)=2,(3)(-2)2=12,(4)(+)(-)=-1,其中结果正确的个数为( )
A.1 B.2 C.3 D.4
(2)计算:-3+=______;
(3)化简:(-)--|-3|=________.
【解后感悟】(1)二次根式的加减运算,关键是掌握二次根式的化简及同类二次根式的合并;(2)二次根式的混合运算,正确化简二次根式是解题关键.
3.(1)下列计算正确的是( )
A.4-3=1 B.+=
C.2= D.3+2=5
(2)算式(+×)×之值为( )
A.2 B.12 C.12 D.18
4.(1)计算(-3)·(+3)=____________________;
(2)(·聊城)计算:·÷= .
类型四 二次根式的大小比较
已知甲、乙、丙三数,甲=5+,乙=3+,丙=1+,则甲、乙、丙的大小关系,下列何者正确( )
A.丙<乙<甲 B.乙<甲<丙
C.甲<乙<丙 D.甲=乙=丙
【解后感悟】比较两个二次根式大小时要注意:(1)负号不能移到根号内;(2)根号外的正因数要平方后才能从根号外移到根号内.
5.(1)(·河北)在数轴上标注了四段范围,如图,则表示的点落在( )
A.段① B.段② C.段③ D.段④
(2)(·杭州)若k<<k+1(k是整数),则k=( )
A.6 B.7 C.8 D.9
(3)(·白银)估计与0.5的大小关系是:____________________0.5.(填“>”、“=”、“<”)
类型五 二次根式的综合型问题
(1)已知实数x,y满足+=0,则以x,y的值为两边长的等腰三角形的周长是________.
(2)在日常生活中,取款、上网都需要密码,有的人把自己的出生年月作为密码,有的人把生活中的重要数字或自己认为吉利的数字作为密码,这样很容易被知情人窃用.有一种用二次根式法产生的密码,如:对于二次根式,计算的结果是11,取被开方数和计算结果,再在中间加一个数字0,于是就得到一个六个数字的密码“121011”.对于二次根式,用上述方法产生的密码是________.
【解后感悟】常见的非负数有三种形式:|a|,,a2;若几个非负数的和等于零,则这几个数都为零.
6.(1)矩形相邻两边长分别为,,则它的周长是____________________,面积是____________________.
(2)观察分析下列数据,寻找规律:0,,,3,2,…,那么第10个数据应是____________________.
(3)若y=++x3,则10x+2y的平方根为____________________.
7.已知x=+1,y=-1,求下列各式的值:
(1)x2+2xy+y2; (2)x2-y2.
【探索规律题】
如图,以O(0,0)、A(2,0)为顶点作正△OAP1,以点P1和线段P1A的中点B为顶点作正△P1BP2,再以点P2和线段P2B的中点C为顶点作△P2CP3,…,如此继续下去,则第六个正三角形中,不在第五个正三角形上的顶点P6的坐标是________.
【方法与对策】根据O(0,0),A(2,0)为顶点作△OAP1,再以P1和P1A的中点B为顶点作△P1BP2,再以P2和P2B的中点C为顶点作△P2CP3,…,如此继续下去,结合图形求出点P6的坐标.本题由特殊到一般的规律解题是关键,这类题型是中考的热点.
【二次根式的化简符号不明确】
下列各式中,正确的是( )
A.=-3 B.-=-3 C.=±3 D.=±3
参考答案
第5讲 二次根式及其运算
【考点概要】
1.a≥0
- ≥0 a -a
3.最简二次根式 相同 乘除
【考题体验】
1.B
- D
- B
4. -2
5.原式=2-2+2=2.
【知识引擎】
【解析】(1)③; (2)①-=,②=3,④÷=2; (3)主要从二次根式性质、运算法则方面去思考.
【例题精析】
例1 (1)A;(2)4;(3)-3 例2 (1)根据题意得,2x+1≥0且x-1≠0,解得x≥-且x≠1.(2)3;(3)-1. 例3 (1)D;(2)原式=2-+=,故答案为:;(3)(-)--|-3|=-3-2-(3-)=-6.故答案为:-6.
例4 ∵3=<<=4, ∴8<5+<9,∴8<甲<9.∵4=<<=5,∴7<3+<8,∴7<乙<8.∵4=<<=5,∴5<1+<6,∴5<丙<6.∴丙<乙<甲.故选A. 例5 (1)由+=0得,x-4=0,y-8=0,即x=4,y=8.若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形.若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20;即等腰三角形的周长是20.(2)=0.9,所以得到一个六个数字的密码081009.
【变式拓展】
1.(1)D (2)9 2.(1)C (2)D (3)-1 (4)1 (5)-2
- (1)C (2)D
4.(1)-3 (2)12
5.(1)C (2)D (3)>
6.(1)6 4 (2)3 (3)±6
7.(1)因为x=+1,y=-1,所以x+y=2,x-y=2.则(1)x2+2xy+y2=(x+y)2=(2)2=12. (2)x2-y2=(x+y)(x-y)=4.
【热点题型】
【分析与解】每一个正三角形的边长都是上个三角形的边长的,第六个正三角形的边长是,故顶点P6的横坐标是,P5纵坐标是--=,P6的纵坐标为+=,故答案为:(,).
【错误警示】
===3,选项A错误;===3,选项C错误;=3,选项D错误.故选B.
相关学案
这是一份2022年中考数学总复习第32讲《简单事件的概率及其应用》讲解(含答案) 学案,共13页。学案主要包含了解后感悟,实际应用题,方法与对策,考点概要,考题体验,知识引擎,例题精析,变式拓展等内容,欢迎下载使用。
这是一份2022年中考数学总复习第31讲《数据的分析及其应用》讲解(含答案) 学案,共13页。学案主要包含了解后感悟,实际探究题,方法与对策,考点概要,考题体验,知识引擎,例题精析,变式拓展等内容,欢迎下载使用。
这是一份2022年中考数学总复习第14讲《反比例函数及其图象》讲解(含答案) 学案,共15页。学案主要包含了解后感悟,探索研究题,方法与对策,考点概要,考题体验,知识引擎,例题精析,变式拓展等内容,欢迎下载使用。