- 中考数学复习6:一次函数与反比例函数 教案 教案 5 次下载
- 中考数学复习7:二次函数 教案 教案 4 次下载
- 中考数学复习9:三角形 教案 教案 4 次下载
- 中考数学复习10:四边形 教案 教案 1 次下载
- 中考数学复习11:圆 教案 教案 7 次下载
中考数学复习8:几何初步与尺规作图
展开中考数学复习8:几何初步与尺规作图
知识集结
知识元
图形认识初步
知识讲解
直线、射线、线段
1.把线段向两端无限延伸形成的图形叫做直线.
(1)表示方法
①用两个大写字母来表示,这两个大写字母表示直线上的点,不分先后顺序,如直线AB,如下图⑴也可以写作直线BA.
② 用一个小写字母来表示,如直线,如上图⑵.
注意:在直线的表示前面必须加上“直线”二字;用两个大写字母表示时字母不分先后顺序.
(2)点与直线的关系:点在直线上、点在直线外.
(3)交点:当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共的顶点叫做他们的交点.
2.射线:把线段向一方无限延伸的图形叫做射线.
(1)表示方法:端点字母必须写在前面.
① 用两个大写字母来表示.第一个大写字母表示射线的端点,第二个大写字母表示射线上的点.如射线OA,如图⑶,但不能写作射线AO.
② 用一个小写字母来表示,如射线,如图⑷.
注意:在射线的表示前面必须加上“射线”二字.用两个大写字母表示射线时字母有先后顺序,射线的端点在前.
(2)射线可以看作是直线的一部分,识别射线是否相同——端点相同、延伸方向也相同.
3.线段:直线上两个点和他们之间的部分叫做线段,这两个点叫做线段的端点.
(1)表示方法
① 用两个大写字母来表示,这两个大写字母表示线段的两个端点,无先后顺序之分,如线段AB,如图⑸,也可以写作线段BA.
② 也可以用一个小写字母来表示:如线段,如图⑹.
注意:在线段的表示前面必须加上“线段”二字.用两个大写字母表示线段时字母不分先后顺序.
(2)画法
4.直线、射线、线段三者之间的区别与联系
类型
端点
延长线及反向延长线
用两个大写字母表示
直线
个
无
无顺序
射线
个
有反向延长线
第一个表示端点
线段
个
两者都有
无顺序
5.直线的基本性质:经过两点有且只有一条直线(两点确定一条直线)
6.(1)线段的基本性质:两点之间,线段最短.
(2)两点之间线段的长度叫做两点之间的距离.
例题精讲
图形认识初步
例1.
(2019∙鄂尔多斯)下面四个图形中,经过折叠能围成如图所示的几何图形的是( )
A.
B.
C.
D.
【答案】B
【解析】
题干解析:
三角形图案的顶点应与圆形的图案相对,而选项A与此不符,所以错误;
三角形图案所在的面应与正方形的图案所在的面相邻,而选项C与此也不符,
三角形图案所在的面应与圆形的图案所在的面相邻,而选项D与此也不符,正确的是B。
例2.
(2019∙济宁)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是( )
A.
B.
C.
D.
【答案】B
【解析】
题干解析:
选项A和C带图案的一个面是底面,不能折叠成原几何体的形式;选项B能折叠成原几何体的形式;选项D折叠后下面带三角形的面与原几何体中的位置不同。
例3.
(2019∙日照)如图,已知AB=8cm,BD=3cm,C为AB的中点,则线段CD的长为___cm.
【答案】
1
【解析】
题干解析:∵C为AB的中点,AB=8cm,∴BC=AB=×8=4(cm),∵BD=3cm,∴CD=BC-BD=4-3=1(cm),则CD的长为1cm;
例4.
(2019∙苏州)“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”.图①是由边长为10cm的正方形薄板分为7块制作成的“七巧板”,图②是用该“七巧板”拼成的一个“家”的图形.该“七巧板”中7块图形之一的正方形边长为___cm(结果保留根号).
【答案】
【解析】
题干解析:10×10=100(cm2)=(cm)
例5.
(2019∙聊城)数轴上O,A两点的距离为4,一动点P从点A出发,按以下规律跳动:第1次跳动到AO的中点A1处,第2次从A1点跳动到A1O的中点A2处,第3次从A2点跳动到A2O的中点A3处,按照这样的规律继续跳动到点A4,A5,A6,…,An.(n≥3,n是整数)处,那么线段AnA的长度为_____(n≥3,n是整数).
【答案】
4-
【解析】
题干解析:由于OA=4,所有第一次跳动到OA的中点A1处时,OA1=OA=×4=2,同理第二次从A1点跳动到A2处,离原点的()2×4处,同理跳动n次后,离原点的长度为()n×4=,故线段AnA的长度为4-(n≥3,n是整数).
例6.
(2019∙烟台)小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),∠AOB的度数是_____.
【答案】
45°
【解析】
题干解析:在折叠过程中角一直是轴对称的折叠,∠AOB=22.5°×2=45°;
例7.
(2019∙常州)如果∠α=35°,那么∠α的余角等于____°.
【答案】
55
【解析】
题干解析:∵∠α=35°,∴∠α的余角等于90°-35°=55°
例8.
(2019∙广州)一副三角板如图放置,将三角板ADE绕点A逆时针旋转α(0°<α<90°),使得三角板ADE的一边所在的直线与BC垂直,则α的度数为_________.
【答案】
15°或60°
【解析】
题干解析:分情况讨论:①当DE⊥BC时,∠BAD=180°-60°-45°=75°,∴α=90°-∠BAD=15°;②当AD⊥BC时,α=90°-∠C=90°-30°=60°。
相交线与平行线
知识讲解
三线八角的识别
两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角.
如图,直线被直线所截
①∠1与∠5在截线的同侧,同在被截直线的上方,叫做同位角(位置相同).
②∠5与∠3在截线的两旁(交错),在被截直线之间(内),叫做内错角(位置在内且交错).
③∠5与∠4在截线的同侧,在被截直线之间(内),叫做同旁内角.
④三线八角也可以成模型中看出.同位角是“A”型;内错角是“Z”型;同旁内角是“U”型.
两直线平行的性质与判定
1、平行线的性质:
性质1:两直线平行,同位角相等;
性质2:两直线平行,内错角相等;
性质3:两直线平行,同旁内角互补.
几何符号语言:
∵AB∥CD
∴∠1=∠2(两直线平行,内错角相等)
∵AB∥CD
∴∠3=∠2(两直线平行,同位角相等)
∵AB∥CD
∴∠4+∠2=180°(两直线平行,同旁内角互补)
2、两条平行线的距离
如图,直线AB∥CD,EF⊥AB于E,EF⊥CD于F,则称线段EF的长度为两平行线AB与CD间的距离.
注意:直线AB∥CD,在直线AB上任取一点G,过点G作CD的垂线段GH,则垂线段GH的长度也就是直线AB与CD间的距离.
二、两直线平行的判定方法
方法一 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行
简称:同位角相等,两直线平行
方法二 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行
简称:内错角相等,两直线平行
方法三 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行
简称:同旁内角互补,两直线平行
几何符号语言:
∵ ∠3=∠2
∴ AB∥CD(同位角相等,两直线平行)
∵ ∠1=∠2
∴ AB∥CD(内错角相等,两直线平行)
∵ ∠4+∠2=180°
∴ AB∥CD(同旁内角互补,两直线平行)
垂线的性质及相关计算
一、垂线
⑴定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足.
符号语言记作:如图所示:AB⊥CD,垂足为O
⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)
⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短.简称:垂线段最短.
二、垂线的画法:
⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线.
注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;
②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上.
画法:⑴一靠:用三角尺一条直角边靠在已知直线上,
⑵二移:移动三角尺使一点落在它的另一边直角边上,
⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线.
三、点到直线的距离
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离
如图,PO⊥AB,同P到直线AB的距离是PO的长.PO是垂线段.PO是点P到直线AB所有线段中最短的一条.
现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用.
例题精讲
相交线与平行线
例1.
(2019∙遵义)如图,∠1+∠2=180°,∠3=104°,则∠4的度数是( )
A.74°
B.76°
C.84°
D.86°
【答案】B
【解析】
题干解析:
∵∠1+∠2=180°,∠1+∠5=180°,
∴∠2=∠5,
∴a∥b,
∴∠4=∠6,
∵∠3=104°,
∴∠6=180°-∠3=76°,
∴∠4=76°,
例2.
(2019∙新疆)如图,AB∥CD,∠A=50°,则∠1的度数是( )
A.40°
B.50°
C.130°
D.150°
【答案】C
【解析】
题干解析:
∵AB∥CD,
∴∠2=∠A=50°,
∴∠1=180°-∠2=180°-50°=130°,
例3.
(2019∙孝感)如图,直线l1∥l2,直线l3与l1,l2分别交于点A,C,BC⊥l3交l1于点B,若∠1=70°,则∠2的度数为( )
A.10°
B.20°
C.30°
D.40°
【答案】B
【解析】
题干解析:
∵l1∥l2,
∴∠1=∠CAB=70°,
∵BC⊥l3交l1于点B,
∴∠ACB=90°,
∴∠2=180°-90°-70°=20°,
例4.
(2019∙天门)如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=110°,则∠AOF的度数是( )
A.20°
B.25°
C.30°
D.35°
【答案】D
【解析】
题干解析:
∵CD∥AB,
∴∠AOD+∠D=180°,
∴∠AOD=70°,
∴∠DOB=110°,
∵OE平分∠BOD,
∴∠DOE=55°,
∵OF⊥OE,
∴∠FOE=90°,
∴∠DOF=90°-55°=35°,
∴∠AOF=70°-35°=35°,
例5.
(2019∙乐山)如图,直线a∥b,点B在a上,且AB⊥BC.若∠1=35°,那么∠2等于( )
A.45°
B.50°
C.55°
D.60°
【答案】C
【解析】
题干解析:
∵a∥b,∠1=35°,
∴∠BAC=∠1=35°。
∵AB⊥BC,
∴∠2=∠BCA=90°-∠BAC=55°.
例6.
(2019∙济宁)如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=125°,则∠4的度数是( )
A.65°
B.60°
C.55°
D.75°
【答案】C
【解析】
题干解析:
∵∠1=∠2,
∴a∥b,
∴∠4=∠5,
∵∠5=180°-∠3=55°,
∴∠4=55°,
例7.
(2019∙益阳)如图,直线AB∥CD,OA⊥OB,若∠1=142°,则∠2=____度。
【答案】
52
【解析】
题干解析:∵AB∥CD,∴∠3=∠2,∵OA⊥OB,∴∠O=90°,∵∠1=∠3+∠O=142°,∴∠2=∠1-∠O=142°-90°=52°,
例8.
(2019∙台州)如图,直线l1∥l2∥l3,A,B,C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=4,且=,则m+n的最大值为___。
【答案】
【解析】
题干解析:过B作BE⊥l1于E,延长EB交l3于F,过A作AN⊥l2于N,过C作CM⊥l2于M,设AE=x,CF=y,BN=x,BM=y,∵BD=4,∴DM=y-4,DN=4-x,∵∠ABC=∠AEB=∠BFC=∠CMD=∠AND=90°,∴∠EAB+∠ABE=∠ABE+∠CBF=90°,∴∠EAB=∠CBF,∴△ABE∽△BFC,∴,即=,∴xy=mn,∵∠ADN=∠CDM,∴△CMD∽△AND,∴=,即=,∴y=-x+10,∵=,∴n=m,∴(m+n)最大=m,∴当m最大时,(m+n)最大=m,∵mn=xy=x(-x+10)=-x2+10x=m2,∴当x=-=时,mn最大==m2,∴m最大=,∴m+n的最大值为×=.
尺规作图
知识讲解
尺规作图
一、作线段等于已知线段
已知:线段a
求作:线段AB,使AB=a
作法:1、作射线AC
2、在射线AC上截取AB=a,则线段AB就是所要求作的线段
二、作角等于已知角
已知:∠AOB
求作:∠A′O′B′,使∠A′O′B′=∠AOB.
作法:
(1)作射线O′A′.
(2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D.
(3)以点O′为圆心,以OC长为半径画弧,交O′A′于点C′.
(4)以点C′为圆心,以CD长为半径画弧,交前面的弧于点D′.
(5)过点D′作射线O′B′.∠A′O′B′就是所求作的角.
三、作角的平分线
已知:∠AOB,
求作:∠AOB内部射线OC,使:∠AOC=∠BOC,
作法:(1)在OA和OB上,分别截取OD、OE,使OD=OE.
(2)分别以D、E为圆心,大于的长为半径作弧,在∠AOB内,两弧交于点C.
(3)作射线OC.OC就是所求作的射线.
四、作线段的垂直平分线(中垂线)或中点
已知:线段AB
求作:线段AB的垂直平分线
作法:
(1)分别以A、B为圆心,以大于AB的一半为半
径在AB两侧画弧,分别相交于E、F两点
(2)经过E、F,作直线EF(作直线EF交AB于
点O)直线EF就是所求作的垂直平分线
(点O就是所求作的中点)
五、过直线外一点作直线的垂线.
(1)已知点在直线外
已知:直线a、及直线a外一点A.(画出直线a、点A)
求作:直线a的垂线直线b,使得直线b经过点A.
作法:
(1)以点A为圆心,以适当长为半径画弧,交直线a
于点C、D.
(2)以点C为圆心,以AD长为半径在直线另一侧画弧.
(3)以点D为圆心,以AD长为半径在直线另一侧画弧,交前一条弧于点B.
(4)经过点A、B作直线AB.直线AB就是所画的垂线b.(如图)
(2)已知点在直线上
已知:直线a、及直线a上一点A.
求作:直线a的垂线直线b,使得直线b经过点A.
作法:
(1) 以A为圆心,任一线段的长为半径画弧,交a于C、B两点
(2) 点C为圆心,以大于CB一半的长为半径画弧;
(3) 以点B为圆心,以同样的长为半径画弧,
两弧的交点分别记为M
(4) 经过A、M,作直线AM直线AM就是所求作的垂线b
例题精讲
尺规作图
例1.
(2019∙宜昌)通过如下尺规作图,能确定点D是BC边中点的是( )
A.
B.
C.
D.
【答案】A
【解析】
题干解析:
作线段BC的垂直平分线可得线段BC的中点。
由此可知:选项A符合条件,
例2.
(2019∙长沙)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是( )
A.20°
B.30°
C.45°
D.60°
【答案】B
【解析】
题干解析:
在△ABC中,∵∠B=30°,∠C=90°,
∴∠BAC=180°-∠B-∠C=60°,
由作图可知MN为AB的中垂线,
∴DA=DB,
∴∠DAB=∠B=30°,
∴∠CAD=∠BAC-∠DAB=30°,
例3.
(2018∙呼伦贝尔)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P,若点P的坐标为(3a,b+1),则a与b的数量关系为( )
A.3a=2b
B.3a=b+1
C.3a+b-1=0
D.3a=-b-1
【答案】D
【解析】
题干解析:
由作图可知:点P在第二象限的角平分线上,
∴3a+b+1=0,
∴3a=-b-1,
例4.
(2018∙百色)已知∠AOB=45°,求作∠AOP=22.5°,作法:
(1)以O为圆心,任意长为半径画弧分别交OA,OB于点N,M;
(2)分别以N,M为圆心,以OM长为半径在角的内部画弧交于点P;
(3)作射线OP,则OP为∠AOB的平分线,可得∠AOP=22.5°
根据以上作法,某同学有以下3种证明思路:
①可证明△OPN≌△OPM,得∠POA=∠POB,可得;
②可证明四边形OMPN为菱形,OP,MN互相垂直平分,得∠POA=∠POB,可得;
③可证明△PMN为等边三角形,OP,MN互相垂直平分,从而得∠POA=∠POB,可得。
你认为该同学以上3种证明思路中,正确的有( )
A.①②
B.①③
C.②③
D.①②③
【答案】A
【解析】
题干解析:
①由作图得:OM=ON,PM=PN,
∵OP=OP,
∴△OMP≌△ONP(SSS),
∴∠POA=∠POB;
故①正确;
②由作图得:OM=ON=PM=PN,
∴四边形MONP是菱形,
∴OP平分∠MON,
∴∠POA=∠POB,
故②正确;
③∵PM=PN,但MN不一定与PM相等,
∴△PMN不一定是等边三角形,
正确证明:∵OM=ON,PM=PN,
∴OP是MN的中垂线,
∴OP⊥MN,
∴∠POA=∠POB,
故③不正确;
例5.
(2018∙河南)如图,已知▱AOBC的顶点O(0,0),A(-1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为( )
A.(-1,2)
B.(,2)
C.(3-,2)
D.(-2,2)
【答案】A
【解析】
题干解析:
∵▱AOBC的顶点O(0,0),A(-1,2),
∴AH=1,HO=2,
∴Rt△AOH中,AO=,
由题可得,OF平分∠AOB,
∴∠AOG=∠EOG,
又∵AG∥OE,
∴∠AGO=∠EOG,
∴∠AGO=∠AOG,
∴AG=AO=,
∴HG=-1,
∴G(-1,2),
例6.
(2018∙荆州)已知:∠AOB,求作:∠AOB的平分线.作法:①以点O为圆心,适当长为半径画弧,分别交OA,OB于点M,N;②分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOB内部交于点C;③画射线OC.射线OC即为所求.上述作图用到了全等三角形的判定方法,这个方法是_____.
【答案】
SSS
【解析】
题干解析:由作法①知,OM=ON,由作法②知,CM=CN,∵OC=OC,∴△OCM≌△OCN(SSS),
例7.
(2018∙山西)如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为____.
【答案】
2
【解析】
题干解析:∵MN∥PQ,∴∠NAB=∠ABP=60°,由题意得:AF平分∠NAB,∴∠1=∠2=30°,∵∠ABP=∠1+∠3,∴∠3=30°,∴∠1=∠3=30°,∴AB=BF,AG=GF,∵AB=2,∴BG=AB=1,∴AG=,∴AF=2AG=2,
例8.
(2018∙淮安)如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A、B为圆心,大于AB的长为半径画弧,两弧交点分别为点P、Q,过P、Q两点作直线交BC于点D,则CD的长是___.
【答案】
【解析】
题干解析:连接AD.∵PQ垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,AD2=AC2+CD2,∴x2=32+(5-x)2,解得x=,∴CD=BC-DB=5-=,
例9.
(2018∙成都)如图,在矩形ABCD中,按以下步骤作图:①分别以点A和C为圆心,以大于AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若DE=2,CE=3,则矩形的对角线AC的长为___.
【答案】
【解析】
题干解析:连接AE,如图,由作法得MN垂直平分AC,∴EA=EC=3,在Rt△ADE中,AD==,在Rt△ADC中,AC==.
例10.
(2017∙无锡)如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):
(1)作△ABC的外心O;
(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.
【答案】
详见解析
【解析】
题干解析:(1)如图所示:点O即为所求。(2)如图所示:六边形DEFGHI即为所求正六边形.
例11.
(2017∙自贡)两个城镇A,B与一条公路CD,一条河流CE的位置如图所示,某人要修建一避暑山庄,要求该山庄到A,B的距离必须相等,到CD和CE的距离也必须相等,且在∠DCE的内部,请画出该山庄的位置P.(不要求写作法,保留作图痕迹.)
【答案】
详见解析
【解析】
题干解析:作法:①作∠ECD的平分线CF,②作线段AB的中垂线MN,③MN与CF交于点P,则P就是山庄的位置。
例12.
(2016∙盐城)如图,已知△ABC中,∠ABC=90°
(1)尺规作图:按下列要求完成作图(保留作图痕迹,请标明字母)
①作线段AC的垂直平分线l,交AC于点O;
②连接BO并延长,在BO的延长线上截取OD,使得OD=OB;
③连接DA、DC
(2)判断四边形ABCD的形状,并说明理由.
【答案】
详见解析
【解析】
题干解析:(1)①如图所示:②如图所示:③如图所示:(2)四边形ABCD是矩形,理由:∵Rt△ABC中,∠ABC=90°,BO是AC边上的中线,∴BO=AC,∵BO=DO,AO=CO,∴AO=CO=BO=DO,∴四边形ABCD是矩形。
例13.
(2014∙来宾)如图,BD是矩形ABCD的一条对角线.
(1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O.(要求用尺规作图,保留作图痕迹,不要求写作法);
(2)求证:DE=BF.
【答案】
详见解析
【解析】
题干解析:(1)答题如图:(2)∵四边形ABCD为矩形,∴AD∥BC,∴∠ADB=∠CBD,∵EF垂直平分线段BD,∴BO=DO,在△DEO和三角形BFO中,,∴△DEO≌△BFO(ASA),∴DE=BF。
例14.
(2013∙太原)如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点.
(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法);
①作∠DAC的平分线AM;
②连接BE并延长交AM于点F;
(2)猜想与证明:试猜想AF与BC有怎样的位置关系和数量关系,并说明理由.
【答案】
详见解析
【解析】
题干解析:(1)如图所示;(2)AF∥BC,且AF=BC,理由如下:∵AB=AC,∴∠ABC=∠C,∴∠DAC=∠ABC+∠C=2∠C,由作图可得∠DAC=2∠FAC,∴∠C=∠FAC,∴AF∥BC,∵E为AC中点,∴AE=EC,在△AEF和△CEB中,∴△AEF≌△CEB(ASA)。∴AF=BC.
命题与证明
知识讲解
定义的概念
对于一个概念特征性质的描述叫做这个概念的定义。如:“两点之间线段的长度,叫做这两点之间的距离”是“两点之间的距离”的定义。
注意:定义必须严密的,一般避免使用含糊不清的语言,例如“一些”、“大概”、“差不多”等不能在定义中出现。
命题的概念
叙述一件事情的句子(陈述句),要么是真的,要么是假的,那么称这个陈述句是一个命
如“你是一个学生”、“我们所使用是教科书是湘教版的”等。
注意:(1)命题必须是一个完整的句子。
(2)这个句子必须对某事情作出肯定或者否定的判断,二者缺一不可。
命题的结构
每个命题都有条件和结论两部分组成。条件是已知的事项,结论是由已知事项推断出的事项。一般地,命题都可以写出“如果------,那么-------”的形式。有的命题表面上看不具有“如果------,那么-------”的形式,但可以写成这种形式。如:“对顶角相等”,改写成“如果两个角是对顶角,那么这两个角相等”。
例 把下列命题改写成“如果------,那么-------”的形式,并指出条件与结论。
1、同角的余角相等 2、两点确定一条直线
真命题与假命题
如果一个命题叙述的事情是真的,那么称它是真命题;如果一个命题叙述的事情是假的,那么称它是假命题
注意:真、假命题的区别就在于其是否是正确的,在判断命题的真假时,要注意把握这点。
证明及互逆命题的定义
1、 从一个命题的条件出发,通过讲道理(推理),得出它的结论成立,这个过程叫作证明。
注意:证明一个命题是假命题的方法是举反例,即找出一个例子,它符合命题条件,但它不满足命题的结论,从而判断这个命题是假命题。
2、 一个命题的条件和结论分别是另一个命题的结论和条件,这两个命题称为互逆的命题,其中的一个命题叫作另一个命题的逆命题。
注意:一个命题为真不能保证它的逆命题为真,逆命题是否为真,需要具体问题具体分析。
公理与定理
数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其它命题真假的原始依据,这样的真命题叫做公理。以基本定义和公理作为推理的出发点,去判断其他命题的真假,已经判断为真的命题称为定理。
注意:(1)公理是不需要证明的,它是判断其他命题真假的依据,定理是需要证明;
(2 ) 定理都是真命题,但真命题不一定都是定理。
互逆定理
如果一个定理的逆命题也是定理,那么称它是原来定理的逆定理,这两个定理称为互逆定理。
注意:每个命题都有逆命题,但并非所有的定理都有逆定理。如:“对顶角相等”就没逆定理。
证明的含义
从一个命题的条件出发,通过讲道理(推理),得出它的结论成立,从而判定该命题为真,这个过程叫做证明。推理证明的必要性:判断猜想的数学结论是否正确,仅仅依靠经验是不够的,必须一步一步,有理有据地进行推理。
证明命题的步骤:由题设出发,经过一步步的推理最后推出结论(书证)正确的过程叫做证明。证明中的每一步推理都要有根据,不能“想当然”,这些根据,可以是已知条件,也可以是定义、公理,在此以前学过的定理。(证明命题的格式一般为:1)按题意画出图形;2)分清命题的条件和结论,结合图形在“已知”中写出条件,在“求证”中写出结论;3)在“证明”中写出推理过程)
证明的四个注意
(1)注意:①公理是通过长期实践反复验证过的,不需要再进行推理论证而都承认的真命题:
②公理可以作为判定其他命题真假的根据.
(2)注意,定理都是真命题,但真命题不一定都是定理;一般选择一些最基本最常用的真命题作为定理,可以以它们为根据推证其他命题. 这些被选作定理的真命题,在教科书中是用黑体字排印的.
(3)注意:在几何问题的研究上,必须经过证明,才能作出真实可靠的判断。如“两直线平行,同位角相等”这个命题,如果只采用测量的方法. 只能测量有限个两平行直线的同位角是相等的. 但采用推理方法证明两平行直线的同位角相等,那么就可以确信任意两平行直线的同位角相等.
(4)注意:证明中的每一步推理都要有根据,不能“想当然”. ①论据必须是真命题,如;定义、公理、已经学过的定理和已知条件;②论据的真实性不能依赖于论证的真实性;③论据应是论题的充足理由.
反证法
反证法:在证明一个命题时,人们有时先假设命题不成立,从这样的假设出发,经过推理得出和已知条件矛盾,或者与定义,公理,定理等矛盾的结论,从而得出假设命题不成立是错误的,即所求证的命题成立,这种证明方法叫做反正法。
反证法的基本步骤:1.假设命题的结论不成立 2.从这个假设出发,经过推理论证得出矛盾。
3.有矛盾判定假设不正确,从而肯定命题的结论正确
结论的反面不止一种情形的反证法:应用反证法证明命题时,首先要分清命题的题设和结论,再全面地否定结论,如果结论的反面不止一种情形,那么必须把各种可能性都列出来,并且在逐一加以否定之后,才能肯定原结论正确
例题精讲
命题与证明
例1.
(2018∙衡阳)下列命题是假命题的是( )
A.正五边形的内角和为540°
B.矩形的对角线相等
C.对角线互相垂直的四边形是菱形
D.圆内接四边形的对角互补
【答案】C
【解析】
题干解析:
正五边形的内角和=(5-2)×180°=540°,A是真命题;
矩形的对角线相等,B是真命题;
对角线互相垂直的平行四边形是菱形,C是假命题;
圆内接四边形的对角互补,D是真命题;
例2.
(2018∙舟山)某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是( )
A.甲
B.甲与丁
C.丙
D.丙与丁
【答案】B
【解析】
题干解析:
∵甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,
∴甲得分为7分,2胜1平,乙得分5分,1胜2平,丙得分3分,1胜0平,丁得分1分,0胜1平,
∵甲、乙都没有输球,∴甲一定与乙平,
∵丙得分3分,1胜0平,乙得分5分,1胜2平,
∴与乙打平的球队是甲与丁。
例3.
(2018∙眉山)下列命题为真命题的是( )
A.两条直线被一组平行线所截,所得的对应线段成比例
B.相似三角形面积之比等于相似比
C.对角线互相垂直的四边形是菱形
D.顺次连结矩形各边的中点所得的四边形是正方形
【答案】A
【解析】
题干解析:
两条直线被一组平行线所截,所得的对应线段成比例,A是真命题;
相似三角形面积之比等于相似比的平方,B是假命题;
对角线互相垂直的平行四边形是菱形,C是假命题;
顺次连结矩形各边的中点所得的四边形是菱形,D是假命题;
例4.
(2018∙重庆)下列命题是真命题的是( )
A.如果一个数的相反数等于这个数本身,那么这个数一定是0
B.如果一个数的倒数等于这个数本身,那么这个数一定是1
C.如果一个数的平方等于这个数本身,那么这个数一定是0
D.如果一个数的算术平方根等于这个数本身,那么这个数一定是0
【答案】A
【解析】
题干解析:
A、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;
B、如果一个数的倒数等于这个数本身,那么这个数一定是1,例如:-1的倒数也是-1,故是假命题;
C、如果一个数的平方等于这个数本身,那么这个数一定是0,例如:1的平方也是1,故是假命题;
D、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,例如:1的算术平方根也是1,故是假命题;
例5.
(2018∙通辽)下列说法错误的是( )
A.通过平移或旋转得到的图形与原图形全等
B.“对顶角相等”的逆命题是真命题
C.圆内接正六边形的边长等于半径
D.“经过有交通信号灯的路口,遇到红灯”是随机事件
【答案】B
【解析】
题干解析:
通过平移或旋转得到的图形与原图形全等,A正确,不符合题意;
“对顶角相等”的逆命题是相等的角是对顶角,是假命题,B错误,符合题意;
圆内接正六边形的边长等于半径,C正确,不符合题意;
“经过有交通信号灯的路口,遇到红灯”是随机事件,D正确,不符合题意;
例6.
(2018∙荆门)下列命题错误的是( )
A.若一个多边形的内角和与外角和相等,则这个多边形是四边形
B.矩形一定有外接圆
C.对角线相等的菱形是正方形
D.一组对边平行,另一组对边相等的四边形是平行四边形
【答案】D
【解析】
题干解析:
A、一个多边形的外角和为360°,若外角和=内角和=360°,所以这个多边形是四边形,故此选项正确;
B、矩形的四个角都是直角,满足对角互补,根据对角互补的四边形四点共圆,则矩形一定有外接圆,故此选项正确;
C、对角线相等的菱形是正方形,故此选项正确;
D、一组对边平行且相等的四边形是平行四边形;而一对边平行,另一组对边相等的四边形可能是平行四边形或是梯形,故此选项错误;
本题选择错误的命题,
例7.
(2019∙安徽)命题“如果a+b=0,那么a,b互为相反数”的逆命题为____________________.
【答案】
如果a,b互为相反数,那么a+b=0
【解析】
题干解析:命题“如果a+b=0,那么a,b互为相反数”的逆命题为:如果a,b互为相反数,那么a+b=0;
例8.
(2018∙鄂尔多斯)下列说法正确的是_____.
①在同一平面内,a,b,c为直线,若a⊥b,b⊥c,则a∥c.
②“若ac>bc,则a>b”的逆命题是真命题.
③若M(a,2),N(1,b)关于x轴对称,则a+b=-1.
④一个多边形的边数增加1条时,内角和增加180°,外角和不变.
⑤的整数部分是a,小数部分是b,则ab=3-3.
【答案】
①③④
【解析】
题干解析:在同一平面内,a,b,c为直线,若a⊥b,b⊥c,则a∥c,①正确;“若ac>bc,则a>b”的逆命题是“若a>b,则ac>bc”,是假命题,②错误;若M(a,2),N(1,b)关于x轴对称,则a=1,b=-2,∴a+b=-1,③正确;一个多边形的边数增加1条时,内角和增加180°,外角和不变,④正确;的整数部分是a,小数部分是b,则a=3,b=-3,∴ab=3-9,⑤错误;
当堂练习
单选题
练习1.
(2019∙乐山)如图,直线a∥b,点B在a上,且AB⊥BC.若∠1=35°,那么∠2等于( )
A.45°
B.50°
C.55°
D.60°
【答案】C
【解析】
题干解析:
∵a∥b,∠1=35°,
∴∠BAC=∠1=35°。
∵AB⊥BC,
∴∠2=∠BCA=90°-∠BAC=55°.
练习2.
(2019∙益阳)下列几何体中,其侧面展开图为扇形的是( )
A.
B.
C.
D.
【答案】C
【解析】
题干解析:
A、圆柱的侧面展开图可能是正方形,故A错误;
B、三棱柱的侧面展开图是矩形,故B错误;
C、圆锥的侧面展开图是扇形,故C正确;
D、三棱锥的侧面展开图是三角形,故D错误。
练习3.
(2018∙眉山)下列命题为真命题的是( )
A.两条直线被一组平行线所截,所得的对应线段成比例
B.相似三角形面积之比等于相似比
C.对角线互相垂直的四边形是菱形
D.顺次连结矩形各边的中点所得的四边形是正方形
【答案】A
【解析】
题干解析:
两条直线被一组平行线所截,所得的对应线段成比例,A是真命题;
相似三角形面积之比等于相似比的平方,B是假命题;
对角线互相垂直的平行四边形是菱形,C是假命题;
顺次连结矩形各边的中点所得的四边形是菱形,D是假命题;
练习4.
(2018∙荆门)下列命题错误的是( )
A.若一个多边形的内角和与外角和相等,则这个多边形是四边形
B.矩形一定有外接圆
C.对角线相等的菱形是正方形
D.一组对边平行,另一组对边相等的四边形是平行四边形
【答案】D
【解析】
题干解析:
A、一个多边形的外角和为360°,若外角和=内角和=360°,所以这个多边形是四边形,故此选项正确;
B、矩形的四个角都是直角,满足对角互补,根据对角互补的四边形四点共圆,则矩形一定有外接圆,故此选项正确;
C、对角线相等的菱形是正方形,故此选项正确;
D、一组对边平行且相等的四边形是平行四边形;而一对边平行,另一组对边相等的四边形可能是平行四边形或是梯形,故此选项错误;
本题选择错误的命题,
填空题
练习1.
(2019∙张家界)已知直线a∥b,将一块含30°角的直角三角板ABC按如图所示方式放置(∠BAC=30°),并且顶点A,C分别落在直线a,b上,若∠1=18°,则∠2的度数是_____.
【答案】
48°
【解析】
题干解析:∵a∥b,∴∠2=∠1+∠CAB=18°+30°=48°,
练习2.
(2019∙广州)一副三角板如图放置,将三角板ADE绕点A逆时针旋转α(0°<α<90°),使得三角板ADE的一边所在的直线与BC垂直,则α的度数为_________.
【答案】
15°或60°
【解析】
题干解析:分情况讨论:①当DE⊥BC时,∠BAD=180°-60°-45°=75°,∴α=90°-∠BAD=15°;②当AD⊥BC时,α=90°-∠C=90°-30°=60°。
解答题
练习1.
(2016∙盐城)如图,已知△ABC中,∠ABC=90°
(1)尺规作图:按下列要求完成作图(保留作图痕迹,请标明字母)
①作线段AC的垂直平分线l,交AC于点O;
②连接BO并延长,在BO的延长线上截取OD,使得OD=OB;
③连接DA、DC
(2)判断四边形ABCD的形状,并说明理由.
【答案】
详见解析
【解析】
题干解析:(1)①如图所示:②如图所示:③如图所示:(2)四边形ABCD是矩形,理由:∵Rt△ABC中,∠ABC=90°,BO是AC边上的中线,∴BO=AC,∵BO=DO,AO=CO,∴AO=CO=BO=DO,∴四边形ABCD是矩形。
练习2.
(2014∙来宾)如图,BD是矩形ABCD的一条对角线.
(1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O.(要求用尺规作图,保留作图痕迹,不要求写作法);
(2)求证:DE=BF.
【答案】
详见解析
【解析】
题干解析:(1)答题如图:(2)∵四边形ABCD为矩形,∴AD∥BC,∴∠ADB=∠CBD,∵EF垂直平分线段BD,∴BO=DO,在△DEO和三角形BFO中,,∴△DEO≌△BFO(ASA),∴DE=BF。
练习3.
(2013∙太原)如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点.
(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法);
①作∠DAC的平分线AM;
②连接BE并延长交AM于点F;
(2)猜想与证明:试猜想AF与BC有怎样的位置关系和数量关系,并说明理由.
【答案】
详见解析
【解析】
题干解析:(1)如图所示;(2)AF∥BC,且AF=BC,理由如下:∵AB=AC,∴∠ABC=∠C,∴∠DAC=∠ABC+∠C=2∠C,由作图可得∠DAC=2∠FAC,∴∠C=∠FAC,∴AF∥BC,∵E为AC中点,∴AE=EC,在△AEF和△CEB中,∴△AEF≌△CEB(ASA)。∴AF=BC.
中考数学一轮复习讲义第29讲《尺规作图》教案: 这是一份中考数学一轮复习讲义第29讲《尺规作图》教案,共36页。教案主要包含了应用角平分线,画已知直线的平行线,垂线,画三角形,通过画图确定圆心等内容,欢迎下载使用。
2022年中考数学复习第19课时《几何初步及相交线平行线》教案: 这是一份2022年中考数学复习第19课时《几何初步及相交线平行线》教案,共4页。教案主要包含了考试目标,教学重点等内容,欢迎下载使用。
初中数学人教版七年级上册第四章 几何图形初步综合与测试教案设计: 这是一份初中数学人教版七年级上册第四章 几何图形初步综合与测试教案设计,共17页。教案主要包含了立体图形转化为平面图形,欧拉公式,正方体的11种展开图,角的定义,角的表示方法,钟表问题等内容,欢迎下载使用。