初中数学人教版八年级上册第十一章 三角形综合与测试课堂检测
展开1.以下列各组线段为边,能组成三角形的是( )
A.1,2,3B.2,3,4C.1,3,5D.2,6,10
2.下列选项中的图形,有稳定性的是( )
A.B.C.D.
3.如图,△ABC中,AC边上的高是( )
A.线段CDB.线段AFC.线段BED.线段CE
4.下列多边形中,内角和是540°的是( )
A.B.C.D.
5.一个十边形的内角和等于( )
A.1800°B.1660°C.1440°D.1200°
6.下列说法:①直线外一点到该直线的垂线段,是这个点到该直线的距离;②同旁内角互补;③过一点有且只有一条直线与已知直线平行;④三角形三条高至少有一条在三角形的内部;⑤垂直于同一条直线的两条直线平行;⑥三角形的角平分线是线段.其中说法正确的有( )
A.2个B.3个C.4个D.5个
7.如图,在△ABC中,CD是AB边上的高,CM是∠ACB的角平分线,若∠CAB=45°,∠CBA=75°,则∠MCD的度数为( )
A.15°B.20°C.25°D.30°
8.如图,△ABC中,∠A=30°,将△ABC沿DE折叠,点A落在F处,则∠FDB+∠FEC的度数为( )
A.140°B.60°C.70°D.80°
9.一个多边形截去一个角后,形成的另一个多边形的内角和是1620°,则原来多边形的边数是( )
A.10或11B.11或12或13C.11或12D.10或11或12
10.如图,△ABC中,∠ABC、∠ACB的三等分线交于点E、D,若∠E=90°,则∠BDC的度数为( )
A.120°B.125°C.130°D.135°
二.填空题
11.射击队员在瞄准目标时,手、肘、肩构成托枪三角形,说明三角形具有 .
12.如图,则x的度数为 .
13.一个正多边形的内角和是外角和的2倍,则它的边数为 .
14.如图,直线AB∥CD,∠B=70°,∠D=30°,则∠E的度数是 .
15.如图,CE是△ABC外角的平分线,且AB∥CE,若∠ACB=40°,则∠A等于 度.
16.如图,AD为△ABC的中线,AB=13cm,AC=10cm.若△ACD的周长28cm,则△ABD的周长为 .
17.如图,在四边形ABCD中,∠DAB的角平分线与∠ABC的外角平分线相交于点P,且∠D+∠C=210°,则∠P= .
18.如图,线段AD和BC相交于点O,若∠A=70°,∠C=85°,则∠B﹣∠D= .
三.解答题
19.如图,在△ABC中,∠A=∠DBC=36°,∠C=72°.求∠1,∠2的度数.
20.如图,在△ABC中,CF、BE分别是AB、AC边上的中线,若AE=2,AF=3,且△ABC的周长为15,求BC的长.
21.如图,在△ABC中,CD平分∠ACB,AE⊥CD,垂足为F,交BC于点E,若∠BAE=33°,∠B=37°,求∠EAC的度数.
22.如图,已知△ABC的高AD,角平分线AE,∠B=26°,∠ACD=56°,求:
(1)∠CAD的度数;
(2)∠AED的度数.
23.“转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化为具体的问题.
(1)请你根据已经学过的知识求出下面星形图(1)中∠A+∠B+∠C+∠D+∠E的度数;
(2)若对图(1)中星形截去一个角,如图(2),请你求出∠A+∠B+∠C+∠D+∠E+∠F的度数;
(3)若再对图(2)中的角进一步截去,你能由题(2)中所得的方法或规律,猜想图3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度数吗?只要写出结论,不需要写出解题过程)
24.阅读下面的材料,并解决问题.
(1)已知在△ABC中,∠A=60°,图1﹣3的△ABC的内角平分线或外角平分线交于点O,请直接求出下列角度的度数.
如图1,∠O= ;如图2,∠O= ;如图3,∠O= ;
如图4,∠ABC,∠ACB的三等分线交于点O1,O2,连接O1O2,则∠BO2O1= .
(2)如图5,点O是△ABC两条内角平分线的交点,求证:∠O=90°+∠A.
(3)如图6,△ABC中,∠ABC的三等分线分别与∠ACB的平分线交于点O1,O2,若∠1=115°,∠2=135°,求∠A的度数.
参考答案
一.选择题
1.解:A.1+2=3,不能组成三角形,故此选项不符合题意;
B.2+3>4,能组成三角形,故此选项符合题意;
C.1+3<5,不能组成三角形,故此选项不符合题意;
D.2+6<10,不能组成三角形,故此选项不符合题意;
故选:B.
2.解:A、B、D中都是四边形,不具有稳定性,
C中是三角形,有稳定性,
故选:C.
3.解:因为点B到AC边的垂线段是BE,所以AC边上的高是BE,
故选:C.
4.解:设这个多边形的边数是n,则
(n﹣2)•180°=540°,
解得:n=5.
则这个多边形的边数是5,
故选:C.
5.解:根据多边形内角和公式得,十边形的内角和等于:
(10﹣2)×180°=8×180°=1440°,
故选:C.
6.解:①直线外一点到该直线的垂线段的长度,是这个点到该直线的距离;故原命题错误;
②两直线平行,同旁内角互补;故原命题错误;
③过直线外一点有且只有一条直线与已知直线平行;故原命题错误;
④三角形三条高至少有一条在三角形的内部;故原命题正确;
⑤在同一平面内,垂直于同一条直线的两条直线平行;故原命题错误;
⑥三角形的角平分线是线段.故原命题正确;
其中说法正确的有2个,
故选:A.
7.解:∵∠CAB=45°,∠CBA=75°,
∴∠ACB=180°﹣∠CAB﹣∠CBA=60°.
∵CM是∠ACB的角平分线,
∴∠ACM=∠ACB=30°.
∴∠CMB=∠CAB+∠ACM=75°.
∵CD是AB边上的高,
∴∠CDA=∠CDB=90°.
∵∠CDB=∠MCD+∠CMB.
∴∠MCD=∠CDB﹣∠CMB
=90°﹣75°
=15°.
故选:A.
8.解:∵△DEF是由△DEA折叠而成的,
∴∠A=∠F=30°.
∵∠A+∠ADF+∠AEF+∠F=360°,
∴∠ADF+∠AEF=360°﹣∠A﹣∠F=300°.
∵∠BDF=180°﹣∠ADF,
∠FEC=180°﹣∠AEF,
∴∠FDB+∠FEC=180°﹣∠ADF+180°﹣∠AEF
=360°﹣(∠ADF+∠AEF)
=360°﹣300°
=60°.
故选:B.
9.解:设多边形截去一个角的边数为n,
则(n﹣2)•180°=1620°,
解得n=11,
∵截去一个角后边上可以增加1,不变,减少1,
∴原来多边形的边数是10或11或12.
故选:D.
10.解:在△BEC中,
∵∠BEC=90°,
∴∠EBC+∠ECB=90°,
∵∠ABC、∠ACB的三等分线交于点E、D,
∴∠DBC=∠EBC,∠DCB=∠ECB,
∴∠DBC+∠DCB=×90°=45°,
∴∠BDC=180°﹣(∠DBC+∠DCB)=135°,
故选:D.
二.填空题
11.解:射击队员在瞄准目标时,手、肘、肩构成托枪三角形,说明三角形具有稳定性,
故答案为:稳定性.
12.解:∵AB⊥BC,
∴∠B=90°,
∵四边形ABCD的内角和为360°,∠A=120°,∠B=90°,
∴∠C+∠D=360°﹣120°﹣90°=150°,
即x+x=150°,
∴x=75°,
故答案为:75°.
13.解:设这个正多边形的边数是n,
根据题意得,(n﹣2)•180°=2×360°,
解得n=6,
故答案为:6.
14.解:∵AB∥CD,
∴∠BMD=∠B=70°,
又∵∠BMD是△MDE的外角,
∴∠E=∠BMD﹣∠D=70°﹣30°=40°.
故答案为:40°.
15.解:∵∠ACB=40°,
∴∠ACD=180°﹣40°=140°,
∵CE是△ABC外角的平分线,
∴∠ACE=∠ACD=70°,
∵AB∥CE,
∴∠A=∠ACE=70°,
故答案为:70.
16.解:∵AD为△ABC的中线,
∴BD=DC,
∵△ACD的周长28cm,
∴AC+AD+CD=28(cm),
∵AC=10cm,
∴AD+CD=18(cm),即AD+BD=18(cm),
∵AB=13cm,
∴△ABD的周长=AB+AD+BD=31(cm),
故答案为:31cm.
17.解:如图,∵∠D+∠C=210°,∠DAB+∠ABC+∠C+∠D=360°,
∴∠DAB+∠ABC=150°.
又∵∠DAB的角平分线与∠ABC的外角平分线相交于点P,
∴∠PAB+∠ABP=∠DAB+∠ABC+(180°﹣∠ABC)=90°+(∠DAB+∠ABC)=165°,
∴∠P=180°﹣(∠PAB+∠ABP)=15°.
故答案为:15°.
18.解:∵∠C+∠D+∠COD=180°,∠A+∠B+∠AOB=180°,
∴∠D=180°﹣∠C﹣∠COD,∠B=180°﹣∠A﹣∠AOB.
∵∠AOB=∠COD,
∴∠B﹣∠D=(180°﹣∠A﹣∠AOB)﹣(180°﹣∠C﹣∠COD)=∠C﹣∠A=85°﹣70°=15°.
故答案为:15°.
三.解答题
19.解:∵∠A=∠DBC=36°,∠C=72°,
∴△BCD中,∠1=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,
∵∠1是△ABD的外角,
∴∠2=∠1﹣∠A=72°﹣36°=36°.
20.解:∵CF、BE分别是AB、AC边上的中线,AE=2,AF=3,
∴AB=2AF=2×3=6,
AC=2AE=2×2=4,
∵△ABC的周长为15,
∴BC=15﹣6﹣4=5.
21.解:∵AE⊥CD交CD于点F,
∴∠AFC=∠EFC=90°,
∵CD平分∠ACB,
∴∠ACF=∠ECF,
∵∠AFC+∠EAC+∠ACF=180°,∠EFC+∠CEA+∠ECF=180°,
∴∠EAC=∠CEA,
∵∠CEA=∠B+∠BAE,∠B=37°,∠BAE=33°,
∴∠CEA=70°,
∴∠EAC=70°.
22.解:(1)在Rt△ACD中,∠D=90°,∠ACD=56°,
∴∠CAD=180°﹣90°﹣56°=34°;
(2)在△ABC中,∵∠ACD=∠B+∠BAC,
∴∠BAC=56°﹣26°=30°,
∵AE平分∠BAC,
∴∠BAE=∠BAC=15°,
∴∠AED=∠B+∠BAE=26°+15°=41°.
23.解:(1)∵∠1=∠2+∠D=∠B+∠E+∠D,∠1+∠A+∠C=180°,
∴∠A+∠B+∠C+∠D+∠E=180°;
(2)∵∠1=∠2+∠F=∠B+∠E+∠F,∠1+∠A+∠C+∠D=360°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°;
(3)根据图中可得出规律∠A+∠B+∠C+∠D+∠E=180°,每截去一个角则会增加180度,
所以当截去5个角时增加了180×5度,
则∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=180°×5+180°=1080°.
24.解;(1)如图1,
∵BO平分∠ABC,CO平分∠ACB
∴∠OBC=∠ABC,∠OCB=∠ACB
∴∠OBC+∠OCB
=(∠ABC+∠ACB)
=(180°﹣∠BAC)
=(180°﹣60°)
=60°
∴∠O=180°﹣(∠OBC+∠OCB)=120°;
如图2,
∵BO平分∠ABC,CO平分∠ACD
∴∠OBC=∠ABC,∠OCD=∠ACD
∵∠ACD=∠ABC+∠A
∴∠OCD=(∠ABC+∠A)
∵∠OCD=∠OBC+∠O
∴∠O=∠OCD﹣∠OBC
=∠ABC+∠A﹣∠ABC
=∠A
=30°
如图3,
∵BO平分∠EBC,CO平分∠BCD
∴∠OBC=∠EBC,∠OCB=∠BCD
∴∠OBC+∠OCB
=(∠EBC+∠BCD)
=(∠A+∠ACB+∠BCD)
=(∠A+180°)
=(60°+180°)
=120°
∴∠O=180°﹣(∠OBC+∠OCB)=60°
如图4,
∵∠ABC,∠ACB的三等分线交于点O1,O2
∴∠O2BC=∠ABC,∠O2CB=∠ACB,O1B平分∠O2BC,O1C平分∠O2CB,O2O1平分BO2C
∴∠O2BC+∠O2CB
=(∠ABC+∠ACB)
=(180°﹣∠BAC)
=(180°﹣60°)
=80°
∴∠BO2C=180°﹣(∠O2BC+∠O2CB)=100°
∴∠BO2O1=∠BO2C=50°
故答案为:120°,30°,60°,50°;
(2)证明:∵OB平分∠ABC,OC平分∠ACB,
∴∠OBC=∠ABC,∠OCB=∠ACB,
∠O=180°﹣(∠OBC+∠OCB)
=180°﹣(∠ABC+∠ACB)
=180°﹣(180°﹣∠A)
=90°+∠A.
(3)∵∠O2BO1=∠2﹣∠1=20°
∴∠ABC=3∠O2BO1=60°,∠O1BC=∠O2BO1=20°
∴∠BCO2=180°﹣20°﹣135°=25°
∴∠ACB=2∠BCO2=50°
∴∠A=180°﹣∠ABC﹣∠ACB=70°
或由题意,设∠ABO2=∠O2BO1=∠O1BC=α,∠ACO2=∠BCO2=β,
∴2α+β=180°﹣115°=65°,α+β=180°﹣135°=45°
∴α=20°,β=25°
∴∠ABC+∠ACB=3α+2β=60°+50°=110°,
∴∠A=70°.
数学八年级上册第十一章 三角形综合与测试同步训练题: 这是一份数学八年级上册第十一章 三角形综合与测试同步训练题,共5页。
数学八年级上册第十一章 三角形综合与测试课时作业: 这是一份数学八年级上册第十一章 三角形综合与测试课时作业,共12页。试卷主要包含了五边形的内角和是,下列说法正确的是,下列图形中三角形的个数是,内角和等于外角和2倍的多边形是等内容,欢迎下载使用。
人教版八年级上册第十一章 三角形综合与测试复习练习题: 这是一份人教版八年级上册第十一章 三角形综合与测试复习练习题,共16页。试卷主要包含了下列说法错误的是,下列是利用了三角形的稳定性的有等内容,欢迎下载使用。