![2019-2020学年第二学期-八年级-数学科目-期末考试试卷【高新三中】01](http://img-preview.51jiaoxi.com/2/3/6032726/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2019-2020学年第二学期-八年级-数学科目-期末考试试卷【高新三中】02](http://img-preview.51jiaoxi.com/2/3/6032726/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2019-2020学年第二学期-八年级-数学科目-期末考试试卷【高新三中】03](http://img-preview.51jiaoxi.com/2/3/6032726/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2019-2020学年第二学期-八年级-数学科目-期末考试试卷【高新三中】
展开2019-2020学年-第二学期-八年级-期末考试卷【高新三中】
一、选择题
1.如图,矩形的对角线与数轴重合(点在正半轴上),,,若点在数轴上表示的数是-1,则对角线的交点在数轴上表示的数为( )
A.5.5 B.5 C.6 D.6.5
2.下列各命题的逆命题成立的是( )
A.全等三角形的对应角相等 B.如果两个数相等,那么它们的绝对值相等
C.两直线平行,同位角相等 D.如果两个角都是45°,那么这两个角相等
3.已知函数y=,则自变量x的取值范围是( )
A.﹣1<x<1 B.x≥﹣1且x≠1 C.x≥﹣1 D.x≠1
4.如图,在四边形ABCD中,AB∥CD,要使得四边形ABCD是平行四边形,可添加的条件不正确的是 ( )
A.AB=CD B.BC∥AD C.BC=AD D.∠A=∠C
5.计算 的结果为( ).
A. B. C. D.2
6.已知y=(k-3)x|k|-2+2是一次函数,那么k的值为( )
A. B.3 C. D.无法确定
7.如图2,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD为菱形的是( )
A.BA=BC B.AC、BD互相平分 C.AC=BD D.AB∥CD
8.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为
A.9 B.6 C.4 D.3
9.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适( )
A.甲 B.乙 C.丙 D.丁
10.如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B→A→D→C方向以1单位/秒的速度运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,则AD等于( )
A.10 B. C.8 D.
11.如图,将矩形沿折叠,使顶点恰好落在的中点上.若,,则的长为( )
A.4 B. C.4.5 D.5
12.如图,四边形ABCD是菱形,∠ABC=120°,BD=4,则BC的长是( )
A.4 B.5 C.6 D.4
二、填空题
13.如图,在▱ABCD中,E为CD的中点,连接AE并延长,交BC的延长线于点G,BF⊥AE,垂足为F,若AD=AE=1,∠DAE=30°,则EF=_____.
14.若=3-x,则x的取值范围是__________.
15.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长= cm.
16.如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF交AD于点H,那么DH的长是______.
17.如图,如果正方形的面积为,正方形的面积为,则的面积_________.
18.如图,直线y=kx+b(k>0)与x轴的交点为(﹣2,0),则关于x的不等式kx+b<0的解集是_____.
19.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图6-Z-2所示,那么三人中成绩最稳定的是________.
20.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需______米.
三、解答题
21.一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.
(1)求y关于x的函数关系式;(不需要写定义域)
(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?
22.为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看次的人数没有标出).
根据上述信息,解答下列各题:
×
(1)该班级女生人数是__________,女生收看“两会”新闻次数的中位数是________;
(2)对于某个群体,我们把一周内收看某热点新闻次数不低于次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低,试求该班级男生人数;
(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).
统计量
平均数(次)
中位数(次)
众数(次)
方差
…
该班级男生
…
根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.
23.如图,已知四边形ABCD是平行四边形,点E,F分别是AB,BC上的点,AE=CF,并且∠AED=∠CFD.
求证:(1)△AED≌△CFD;
(2)四边形ABCD是菱形.
24.某公司开发出一款新的节能产品,该产品的成本价为6元件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为9元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少4件,
(1)请直接写出y与x之间的函数关系式;
(2)日销售利润不低于960元的天数共有多少天?试销售期间,日销售最大利润是多少元?
(3)工作人员在统计的过程中发现,有连续两天的销售利润之和为1980元,请你算出是哪两天.
25.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:
(1)本次一共调查了多少名购买者?
(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为 度.
(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?
参考答案
一、选择题
1.A
解析:A
【解析】
【分析】
连接BD交AC于E,由矩形的性质得出∠B=90°,AE=AC,由勾股定理求出AC,得出OE,即可得出结果.
【详解】
连接BD交AC于E,如图所示:
∵四边形ABCD是矩形,
∴∠B=90°,AE=AC,
∴AC=,
∴AE=6.5,
∵点A表示的数是-1,
∴OA=1,
∴OE=AE-OA=5.5,
∴点E表示的数是5.5,
即对角线AC、BD的交点表示的数是5.5;
故选A.
【点睛】
本题考查了矩形的性质、勾股定理、实数与数轴;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.
2.C
解析:C
【解析】
试题分析:首先写出各个命题的逆命题,再进一步判断真假.
解:A、逆命题是三个角对应相等的两个三角形全等,错误;
B、绝对值相等的两个数相等,错误;
C、同位角相等,两条直线平行,正确;
D、相等的两个角都是45°,错误.
故选C.
3.B
解析:B
【解析】
【分析】
根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.
【详解】
解:根据题意得:,
解得:x≥-1且x≠1.
故选B.
点睛:考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数为非负数.
4.C
解析:C
【解析】
【分析】
根据平行四边形的判定方法,逐项判断即可.
【详解】
∵AB∥CD,
∴当AB=CD时,由一组对边平行且相等的四边形为平行四边形可知该条件正确;
当BC∥AD时,由两组对边分别平行的四边形为平行四边形可知该条件正确;
当∠A=∠C时,可求得∠B=∠D,由两组对角分别相等的四边形为平行四边形可知该条件正确;
当BC=AD时,该四边形可能为等腰梯形,故该条件不正确;
故选:C.
【点睛】
本题主要考查平行四边形的判定,掌握平行四边形的判定方法是解题的关键.
5.D
解析:D
【解析】
【分析】
根据二次根式的除法法则进行计算即可.
【详解】
原式=.
故选:D.
【点睛】
本题考查二次根式的除法,掌握二次根式的除法法则是解答本题的关键.
6.C
解析:C
【解析】
【分析】
根据一次函数的定义可得k-3≠0,|k|-2=1,解答即可.
【详解】
一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
所以|k|-2=1,
解得:k=±3,
因为k-3≠0,所以k≠3,
即k=-3.
故选:C.
【点睛】
本题主要考查一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
7.B
解析:B
【解析】
【分析】
【详解】
解:对角线互相垂直平分的四边形为菱形.已知对角线AC、BD互相垂直,
则需添加条件:AC、BD互相平分
故选:B
8.D
解析:D
【解析】
【分析】
已知ab=8可求出四个三角形的面积,用大正方形面积减去四个三角形的面积得到小正方形的面积,根据面积利用算术平方根求小正方形的边长.
【详解】
故选D.
【点睛】
本题考查勾股定理的推导,有较多变形题,解题的关键是找出图形间面积关系,同时熟练运用勾股定理以及完全平方公式,本题属于基础题型.
9.A
解析:A
【解析】
【分析】
根据方差的概念进行解答即可.
【详解】
由题意可知甲的方差最小,则应该选择甲.
故答案为A.
【点睛】
本题考查了方差,解题的关键是掌握方差的定义进行解题.
10.B
解析:B
【解析】
【分析】
当t=5时,点P到达A处,根据图象可知AB=5;当s=40时,点P到达点D处,根据三角形BCD的面积可求出BC的长,再利用勾股定理即可求解.
【详解】
解:当t=5时,点P到达A处,根据图象可知AB=5,
过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,
∵AC=AD,
∴DE=CE=CD,
当s=40时,点P到达点D处,
则S=CD•BC=(2AB)•BC=5×BC=40,
∴BC=8,
∴AD=AC=.
故选B.
【点睛】
本题以动态的形式考查了函数、等腰三角形的性质、勾股定理等知识.准确分析图象,并结合三角形的面积求出BC的长是解题的关键.
11.A
解析:A
【解析】
【分析】
【详解】
∵点C′是AB边的中点,AB=6,
∴BC′=3,
由图形折叠特性知,C′F=CF=BC-BF=9-BF,
在Rt△C′BF中,BF2+BC′2=C′F2,
∴BF2+9=(9-BF)2,
解得,BF=4,
故选A.
12.A
解析:A
【解析】
【分析】
根据菱形的性质可知对角线平分对角,从而可知∠ABD=∠CBD=60°,从而可知△BCD是等边三角形,进而可知答案.
【详解】
∵∠ABC=120°,四边形ABCD是菱形
∴∠CBD=60°,BC=CD
∴△BCD是等边三角形
∵BD=4
∴BC=4
故答案选A.
【点睛】
本题考查的是菱形的性质,能够掌握菱形的性质是解题的关键.
二、填空题
13.﹣1【解析】【分析】首先证明△ADE≌△GCE推出EG=AE=AD=CG=1再求出FG即可解决问题【详解】∵四边形ABCD是平行四边形∴AD∥BGAD=BC∴∠DAE=∠G=30°∵DE=EC∠AE
解析:﹣1
【解析】
【分析】
首先证明△ADE≌△GCE,推出EG=AE=AD=CG=1,再求出FG即可解决问题.
【详解】
∵四边形ABCD是平行四边形,
∴AD∥BG,AD=BC,
∴∠DAE=∠G=30°,
∵DE=EC,∠AED=∠GEC,
∴△ADE≌△GCE,
∴AE=EG=AD=CG=1,
在Rt△BFG中,∵FG=BG•cos30°=,
∴EF=FG-EG=-1,
故答案为-1.
【点睛】
本题考查平行四边形的性质、全等三角形的判定和性质、锐角三角函数等知识,解题的关键是熟练掌握基本知识.
14.【解析】试题解析:∵=3﹣x∴x-3≤0解得:x≤3
解析:
【解析】
试题解析:∵=3﹣x,
∴x-3≤0,
解得:x≤3,
15.9【解析】∵四边形ABCD是矩形∴∠ABC=90°BD=ACBO=OD∵AB=6cmBC=8cm∴由勾股定理得:(cm)∴DO=5cm∵点E F分别是AOAD的中点(cm)故答案为25
解析:9
【解析】
∵四边形ABCD是矩形,
∴∠ABC=90°,BD=AC,BO=OD,
∵AB=6cm,BC=8cm,
∴由勾股定理得: (cm),
∴DO=5cm,
∵点E. F分别是AO、AD的中点,
(cm),
故答案为2.5.
16.【解析】【分析】思路分析:把所求的线段放在构建的特殊三角形内【详解】如图所示连接HCDF且HC与DF交于点P∵正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG∴∠BCF=∠DCG=30
解析:.
【解析】
【分析】
思路分析:把所求的线段放在构建的特殊三角形内
【详解】
如图所示.连接HC、DF,且HC与DF交于点P
∵正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG
∴∠BCF=∠DCG=30°,FC =DC,∠EFC=∠ADC=90°
∠BCG=∠BCD+∠DCG=90°+30°=120°
∠DCF=∠BCG-∠BCF-∠DCG=120°-30°-30°=60°
∴△DCF是等边三角形,∠DFC=∠FDC=60°
∴∠EFD=∠ADF=30°,HF=HD
∴HC是FD的垂直平分线,∠FCH=∠DCH=∠DCF=30°
在Rt△HDC中,HD=DC·tan∠DCH=
∵正方形ABCD的边长为3
∴HD=DC·tan∠DCH=3×tan30°=3×
试题点评:构建新的三角形,利用已有的条件进行组合.
17.【解析】【分析】根据正方形的面积分别求出BCBE的长继而可得CE的长再利用三角形面积公式进行求解即可【详解】∵正方形的面积为正方形的面积为∴BC=AB=BE=∴CE=BE-BC=-∴S△ACE==故
解析:
【解析】
【分析】
根据正方形的面积分别求出BC、BE的长,继而可得CE的长,再利用三角形面积公式进行求解即可.
【详解】
∵正方形的面积为,正方形的面积为,
∴BC=AB=,BE=,
∴CE=BE-BC=-,
∴S△ACE==,
故答案为:.
【点睛】
本题考查了算术平方根的应用,三角形面积,二次根式的混合运算等,熟练掌握并灵活运用相关知识是解题的关键.
18.x<﹣2【解析】【分析】根据一次函数的性质得出y随x的增大而增大当x<﹣2时y<0即可求出答案【详解】解:∵直线y=kx+b(k>0)与x轴的交点为(﹣20)∴y随x的增大而增大当x<﹣2时y<0即
解析:x<﹣2
【解析】
【分析】
根据一次函数的性质得出y随x的增大而增大,当x<﹣2时,y<0,即可求出答案.
【详解】
解:∵直线y=kx+b(k>0)与x轴的交点为(﹣2,0),
∴y随x的增大而增大,
当x<﹣2时,y<0,
即kx+b<0.
故答案为:x<﹣2.
【点睛】
本题主要考查对一次函数与一元一次不等式,一次函数的性质等知识点的理解和掌握,能熟练地运用性质进行说理是解此题的关键.
19.乙【解析】【分析】通过图示波动的幅度即可推出【详解】通过图示可看出一至三次甲乙丙中乙最稳定波动最小四至五次三人基本一样故选乙【点睛】考查数据统计的知识点
解析:乙
【解析】
【分析】
通过图示波动的幅度即可推出.
【详解】
通过图示可看出,一至三次甲乙丙中,乙最稳定,波动最小,四至五次三人基本一样,故选乙
【点睛】
考查数据统计的知识点
20.2+2【解析】【分析】地毯的竖直的线段加起来等于BC水平的线段相加正好等于AC即地毯的总长度至少为(AC+BC)【详解】在Rt△ABC中∠A=30°BC=2m∠C=90°∴AB=2BC=4m∴AC=
解析:2+2
【解析】
【分析】
地毯的竖直的线段加起来等于BC,水平的线段相加正好等于AC,即地毯的总长度至少为(AC+BC).
【详解】
在Rt△ABC中,∠A=30°,BC=2m,∠C=90°,
∴AB=2BC=4m,
∴AC=m,
∴AC+BC=2+2(m).
故答案为:2+2.
【点睛】
本题主要考查勾股定理的应用,解此题的关键在于准确理解题中地毯的长度为水平与竖直的线段的和.
三、解答题
21.(1)该一次函数解析式为y=﹣x+60.(2)在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.
【解析】
【分析】(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;
(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,即可求得答案.
【详解】(1)设该一次函数解析式为y=kx+b,
将(150,45)、(0,60)代入y=kx+b中,得
,解得:,
∴该一次函数解析式为y=﹣x+60;
(2)当y=﹣x+60=8时,
解得x=520,
即行驶520千米时,油箱中的剩余油量为8升.
530﹣520=10千米,
油箱中的剩余油量为8升时,距离加油站10千米,
∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.
【点睛】本题考查了一次函数的应用,熟练掌握待定系数法,弄清题意是解题的关键.
22.(1)20,3;(2)25人;(3)男生比女生的波动幅度大.
【解析】
【分析】
(1)将柱状图中的女生人数相加即可求得总人数,中位数为第10与11名同学的次数的平均数.
(2)先求出该班女生对“两会”新闻的“关注指数”,即可得出该班男生对“两会”新闻的“关注指数”,再列方程解答即可.
(3)比较该班级男、女生收看“两会”新闻次数的波动大小,需要求出女生的方差.
【详解】
(1)该班级女生人数是2+5+6+5+2=20,女生收看“两会”新闻次数的中位数是3.
故答案为20,3.
(2)由题意:该班女生对“两会”新闻的“关注指数”为=65%,所以,男生对“两会”新闻的“关注指数”为60%.设该班的男生有x人,则=60%,解得:x=25.
答:该班级男生有25人.
(3)该班级女生收看“两会”新闻次数的平均数为=3,女生收看“两会”新闻次数的方差为:=.
∵2>,∴男生比女生的波动幅度大.
【点睛】
本题考查了平均数,中位数,方差的意义.解题的关键是明确平均数表示一组数据的平均程度,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
23.(1)证明见解析;(2)证明见解析.
【解析】
分析:(1)由全等三角形的判定定理ASA证得结论;
(2)由“邻边相等的平行四边形为菱形”证得结论.
详解:(1)证明:∵四边形ABCD是平行四边形,
∴∠A=∠C.
在△AED与△CFD中,
,
∴△AED≌△CFD(ASA);
(2)由(1)知,△AED≌△CFD,则AD=CD.
又∵四边形ABCD是平行四边形,
∴四边形ABCD是菱形.
点睛:考查了菱形的判定,全等三角形的判定与性质以及平行四边形的性质,解题的关键是掌握相关的性质与定理.
24.(1) ;(2)试销售期间,日销售最大利润是1080元;(3)连续两天的销售利润之和为1980元的是第16,17两天和第25,26两天.
【解析】
【分析】
(1)根据点D的坐标利用待定系数法即可求出线段OD的函数关系式,根据第23天销售了340件,结合时间每增加1天日销售量减少4件,即可求出线段DE的函数关系式,联立两函数关系式求出交点D的坐标,此题得解;
(2)分0≤x≤18和18<x≤30,找出关于x的一元一次不等式,解之即可得出x的取值范围,有起始和结束时间即可求出日销售利润不低于960元的天数,再根据点D的坐标结合日销售利润=单件利润×日销售数,即可求出日销售最大利润;
(3) 设第x天和第(x+1)天的销售利润之和为1980元,据此列出方程,根据取值范围解答即可.
【详解】
(1)
(2)当0≤x≤18时,根据题意得,(9﹣6)×20x≥960,解得:x≥16;
当18<x≤30时,根据题意得,(9﹣6)×(-4x+432)≥960,解得:x≤28.
∴16≤x≤28. 28-16+1=13(天),
∴日销售利润不低于960元的天数共有13天.
由20x=-4x+432解得,x=18,
当x=18时,y=20x=360,∴点D的坐标为(18,360),
∴日最大销售量为360件,
360×(9-6)=1080(元),
∴试销售期间,日销售最大利润是1080元.
(3)设第x天和第(x+1)天的销售利润之和为1980元.
∵1980÷(9﹣6)=660<340×2,
∴x<17,或x+1>23,
当x<17时,根据题意可得20x+20(x+1)=660,解得x=16,符合,
当x+1>23时,-4x+432-4(x+1)+432=660,解得x=25,符合,
∴连续两天的销售利润之和为1980元的是第16,17两天和第25,26两天.
【点睛】
本题考查了一次函数的应用、待定系数法一次函数解析式,解题的关键是利用待定系数法求出OD的函数关系式以及依照数量关系找出DE的函数关系式.
25.(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.
【解析】
分析:(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;
(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;
(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.
详解:(1)56÷28%=200,
即本次一共调查了200名购买者;
(2)D方式支付的有:200×20%=40(人),
A方式支付的有:200-56-44-40=60(人),
补全的条形统计图如图所示,
在扇形统计图中A种支付方式所对应的圆心角为:360°×=108°,
(3)1600×=928(名),
答:使用A和B两种支付方式的购买者共有928名.
点睛:本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.
2019-2020学年第二学期-八年级-数学科目-期末考试试卷【西科中学】: 这是一份2019-2020学年第二学期-八年级-数学科目-期末考试试卷【西科中学】,共5页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
2019-2020学年第二学期-八年级-数学科目-期末考试试卷【长安三中】: 这是一份2019-2020学年第二学期-八年级-数学科目-期末考试试卷【长安三中】,共14页。试卷主要包含了选择题,填空题,解答题,列分式方程解应用问题,列不等式解应用题等内容,欢迎下载使用。
2019-2020学年第二学期-八年级-数学科目-期末考试试卷【西光中学】: 这是一份2019-2020学年第二学期-八年级-数学科目-期末考试试卷【西光中学】,共19页。试卷主要包含了选择题.,填空题.,解答题.等内容,欢迎下载使用。